首页 > 其他分享 >Polynomial growth harmonic functions

Polynomial growth harmonic functions

时间:2024-05-12 17:20:25浏览次数:16  
标签:functions mu leq beta growth rho Polynomial mathcal lambda

目录

Definitions and notations

  • \(M\) is a complete Riemannian manifold.
  • \(H^d(M):=\{u\in C^{\infty}(M)|\Delta u=0 ~\text{and}~ u(x)=\Omicron (r^d(x)) \,\text{as}\, x \to \infty \}\)
  • \(h^d(M)=\dim (H^d(M))\)

Iintroduction

Let us start from Yau's conjecture:

Conjecture (Yau) If \(M\) has non-negative Ricci curvature, then $$h^d(M)<\infty. $$

  1. Yau’s conjecture was first proved by Colding and Minicozzi in 1996. Indeed, they proved the dimension estimate of the form

\[h^d(M)\leq C_1 d^{\log C_{VD}/\log 2 }, \]

where \(C_1\) depends on the Neumann Poincaré inequality and the volume doubling constant. In particular, it gives a sharp order estimate of the form

\[h^d(M)\leq C_1 d^{m-1 } \]

for manifolds with nonnegative Ricci curvature.
2. Meanwhile, in 1997, Peter Li gave a much simplified proof of this estimate which holds for a larger class of manifolds. In this paper, Li only required the manifold to satisfy a volume comparison condition \((\mathcal{V}_{\mu})\) (see Definition 28.1) and a mean value inequality \((\mathcal{M})\) (see Definition 28.2).
Note that the volume comparison condition and the volume doubling condition can easily be seen to be equivalent. However, the mean value inequality is weaker than the Neumann Poincaré inequality. Moreover, the author’s argument can be applied to sections of vector bundles.
Finally, it is important to note that Li also proved that finite dimensionality and estimates of \(h^d(M)\) actually hold for an even more general class of manifolds (Theorem 28.7), namely those satisfying a weak mean value inequality \((\mathcal{W}\mathcal{M})\) and with polynomial volume growth. However, in this case, the estimate is not sharp.

Main results

Def 28.1 Condition\((\mathcal{V}_{\mu})\): $$V_x(\rho_2) \leq C_{\mathcal{V}} V_x(\rho_1) \left( \frac{\rho_2}{\rho_1} \right)^\mu.$$

Def 28.2 Condition \((\mathcal{M})\): For any non-negative subharmonic function \(f\) on \(M\), it must satisfy

\[f^2(x) \leq C_{\mathcal{M}} V_x^{-1}(\rho) \int_{B_x(\rho)} f^2(y) \, dy. \]

Remark: Note that if \(M\) has nonnegative Ricci curvature, then it satisfies both conditions \((\mathcal{V}_{\mu})\) and \((\mathcal{M})\).

Lemma 28.3 (Li)

\[\left\{ \begin{align*}V_p(\rho) &\leq C \rho^\mu\\|u(x)| &\leq C r^d(x) \end{align*} \right. \Rightarrow \operatorname{tr}_{\beta \rho} A_{\rho} \geq k \beta^{-(2d+\mu+\delta)}. \]

Proof. Denote \(A_{\rho}(u, v) = \int_{B_{\rho}(\rho)} \langle u, v \rangle.\)
Then \(\lambda\) being an eigenvalue of \(A_{\rho}\) w.r.t. \(A_{\beta\rho}\) iff $$A_{\rho}(u, v)=\lambda A_{\beta\rho}(u, v),, \forall v,$$
where \(u\) is the corresponding eigenvector.
Suppose

\[\left\{ \begin{align*}A_{\rho}(u_1, v)&=\lambda_1 A_{\beta\rho}(u_1, v), ~ \forall v\\A_{\beta\rho}(u_2, v)&=\lambda_2A_{\beta^2\rho}(u_2, v), ~ \forall v\\ A_{\rho}(u_3, v)&=\lambda_3A_{\beta^2\rho}(u_3, v), ~ \forall v \end{align*} \right.\]

then one can see

\[\lambda_3=\lambda_1\lambda_2, \]

by using variation formula (\(\lambda\) is the eigenvalue of \(A_{\rho}\) w.r.t. \(A_{\beta\rho}\))

\[\lambda=\inf \frac{A_{\rho}(u, v)}{A_{\rho'}(u, v)}. \]

(one may need the polarization formula.)

Using

\[\lambda_1=\inf \frac{A_{\rho}(u, u)}{A_{\beta\rho}(u, u)}=\inf \frac{A_{\rho}(u, u)}{A_{\beta^2\rho}(u, u)}\frac{A_{\beta^2\rho}(u, u)}{A_{\beta\rho}(u, u)}\geq \lambda_3 \lambda_2^{-1}. \]

Theorem 28.4 (Li) Suppose \(M\) satisfies

\[\left\{ \begin{align*} &(\mathcal{V}_{\mu} )\\ &(\mathcal{M}) , \end{align*} \right. \]

and subspace \(S_d(E,M)\subset \Gamma(E)\) satisfies

\[\left\{ \begin{align*} &\Delta|u| \geq 0 \\ &|u(x)| \leq O(r^d(x)) . \end{align*} \right. \]

Then the dimension of \(\mathcal{S}_d(M, E)\) is finite. Moreover, for all \(d \geq 1\), there exists a constant \(C \geq 0\) depending only on \(\mu\) such that

\[\dim \mathcal{S}_d(M, E) \leq n C C_M d^{\mu-1}. \]

Proof. Let \(K\subset S_d\) be any finite dimensional subspace with \(\dim(K)=k\), and \(\{u_i\}_{i=1}^k\) is a basis. Consider the function

\[\begin{equation} \sum_{i=1}^k|u_i|^2(x) . \end{equation} \]

Note that at a fixed point \(x\in B_p(\rho)\), we can rewrite (1) as

\[\begin{equation} \sum_{i=1}^k|u_i|^2(x) = \sum_i^n|u_i|^2(x) \end{equation} \]

after an orthonormal changing of basis.
That is because if we denote \(K_x \subset K\) be a subspace such that \(u(x)=0, \forall u\in K_x\), then \(K_x\) has at most codimension \(n\). Otherwise, let \(u_1,\cdots,u_{n+1}\) such that \(u_i(x)\neq0, i=1,...,n+1\), since the rank of the bundle is \(n\), there is a linear combination of \(u_i(x)\) which is zero, a contradition.

Def 28.6 Condition(\(\mathcal{WM}\)) :
A complete manifold \(M\) is said to satisfy a weak mean value inequality \((\mathcal{WM})\) if there exist constants \(C_{\mathcal{WM}} > 0\) and \(b \geq 1\) such that for any nonnegative subharmonic function \(f\) defined on \(M\) it must satisfy

\[f(x) \leq C_{\mathcal{WM}} V_x^{-1}(\rho) \int_{B_x(b\rho)} f(y) \, dy. \]

for all \(x \in M\) and \(\rho > 0\).

Theorem 28.7
Let \(M\) be a complete manifold satisfying the weak mean value property \((\mathcal{WM})\). Suppose that the volume growth of \(M\) satisfies \(V_p(\rho) = O(\rho^\mu)\) as \(\rho \to \infty\) for some point \(p \in M\). Then \(H^d(M)\) is finite dimensional for all \(d \geq 0\) and \(\dim H^d(M) \leq C_{WM} (2b + 1)^{2d+\mu}\).

Corollary 28.8
Let \(M\) be a complete manifold. Suppose there exist constants \(C_1, C_2 \geq 0\) and \(\mu > 2\) such that for all \(p \in M\), \(\rho > 0\), and for all \(f \in H^1_{c}(M)\) we have

\[\left( \int_{B_p(\rho)} |f|^{2\mu/(\mu-2)} \right)^{(\mu-2)/\mu} \leq C_1 V_p(\rho)^{-2/\mu} \rho^2 \times \int_{B_p(\rho)} |\nabla f|^2 + C_2 V_p(\rho)^{-2/\mu} \int_{B_p(\rho)} f^2. \]

Proof. Verify that the conditions in Theorem 28.7 are satidfied. (The above Sobolev inequality implies both volume growth and weak mean value property.)

Question
If \(M\) is a complete manifold with nonnegative sectional curvature, then is it true that

\[h^d(M) \leq h^d(\mathbb{R}^m) = \binom{m + d - 1}{d} + \binom{m + d - 2}{d - 1}? \]

This conjecture seems much harder than the above results, since, in above they only give certain asymptotic estimates. But the conjecture says \(h^d(M)\) has a very precise control.

Moreover

In Li and Wang, they propose the following twe conjectures.

Conjecture
Let \(M\) be a complete manifold with non-negative Ricci curvature. Suppose \(M\) has volume growth satisfying

\[V_p(r) = O(r^k) \]

for some \(1 \leq k \leq n\). Then

\[h_d(M) \leq h_d(\mathbb{R}^k) \]

for all \(d \geq 0\).

Conjecture
Let \(M\) be a complete manifold with non-negative Ricci curvature. Then

\[h_d(M) \leq h_d(\mathbb{R}^n) \]

for all \(d \geq 0\). Moreover, equality holds for some \(d \geq 1\) if and only if \(M = \mathbb{R}^n\).

Also see Colding and Minicozzi.
By the way, they said

Recall that two metric spaces are said to be quasi-isometric if they are bilipschitz.

This gives a quite clear definition of ''quasi-isometric''. I once check it online, but it seems much more complicated, see, for example, wiki.

标签:functions,mu,leq,beta,growth,rho,Polynomial,mathcal,lambda
From: https://www.cnblogs.com/crossLH/p/18187964

相关文章

  • SystemVerilog -- 3.10 SystemVerilog Functions
    SystemVerilogFunctionsSystemVerilog函数具有与Verilog中的function相同的特征。Functionsa的主要用途是返回一个可在表达式中使用且不能消耗模拟时间的值。functionfunction不能具有时间控制语句,如@#forkjoinwaitfunction无法启动task,因为允许task消耗模拟时间。AN......
  • [990] Functions of pandas
    Series.isxxxx()Series.isin():WhetherelementsinSeriesarecontainedin values.top_oceania_wines=reviews[(reviews.country.isin(['Australia','NewZealand']))&(reviews.points>=95)Series.str.islower():Checkwh......
  • 论文解读(Polynormer)《Polynormer: Polynomial-Expressive Graph Transformer in Linea
    Note:[wechat:Y466551|可加勿骚扰,付费咨询]2024年4月14日17:13:41论文信息论文标题:Polynormer:Polynomial-ExpressiveGraphTransformerinLinearTime论文作者:论文来源:2024 aRxiv论文地址:download论文代码:download视屏讲解:click1-摘要图转换器(GTs)已经成为一种......
  • CF1165E Two Arrays and Sum of Functions 题解
    题目简述已知两个长度均为$n$的数组$a$和$b$。给定一个函数:$f(l,r)=\sum\limits_{l\lei\ler}a_i\cdotb_i$。你的任务是对数组$b$中的元素以任意的顺序重新排序,使$\sum\limits_{1\lel\ler\len}f(l,r)$的值最小。题目分析我们首先进行化简,发现题......
  • 52 Things: Number 20: How are Merkle-Damgaard style hash functions constructed?
    52Things:Number20:HowareMerkle-Damgaardstylehashfunctionsconstructed?52件事:第20件:Merkle-Damgaard风格的散列函数是如何构建的? Thisisthelatestinaseriesofblogpoststoaddressthelistof '52ThingsEveryPhDStudentShouldKnow' todoCr......
  • Flink: Function And Rich Function , 对比 Function ,Rich functions还提供了这些方法:o
    Flink:FunctionAndRichFunction,对比Function,Richfunctions还提供了这些方法:open、close、getRuntimeContext和setRuntimeContext序言    了解了Flink提供的算子,那我们就可以自定义算子了.自定义算子的目的是为了更加灵活的处理我们的业务数据,并将满足条件......
  • ../inst/include/Eigen/src/Core/MathFunctions.h:487:16: error: no member named 'R
    Asmentionedin conda-forge/r-base-feedstock#163(comment),IsuccessfullyinstalledsctransforminMacsiliconM1Maxbyfirstrun exportPKG_CPPFLAGS="-DHAVE_WORKING_LOG1P intheterminalandtheninstallthepackageinR.......
  • [Rust] Implicitly returning values from functions
    Codehaserror:fnmain(){letanswer=square(3);println!("Thesquareof3is{}",answer);}fnsquare(num:i32)->i32{num*num;}Error:⚠️Compilingofexercises/functions/functions5.rsfailed!Pleasetryagain.Here&#......
  • 绕过disable_functions的限制
    https://github.com/AntSwordProject/AntSword-Labs/tree/master/bypass_disable_functionshttps://wiki.luoyunhao.com/web/Bypassdisable_function绕过disable_functions的限制disable_functions是php.ini中的一个设置选项,可以用来设置PHP环境禁止使用某些函数,通常是网站......
  • 适用于 Amazon Step Functions 的低代码可视化新工作流 Workflow Studio, 现已在 Amaz
    今天,我们非常欣喜地宣布现已在AmazonApplicationCompose中推出AmazonStepFunctionsWorkflowStud。通过这款全新的集成应用,工作流与应用程序资源开发便可整合到统一的可视化基础设施即代码(IaC)生成器。对于使用AmazonStepFunctionsWorkflowStudio创建工作流与......