阶
定义
阶:满足同余式 \(a^n \equiv 1 \pmod m\) 的最小正整数 \(n\) 存在,称作 \(a\) 模 \(m\) 的阶,记作 \(\delta_m(a)\)。
性质
-
\(a,a^2,\ldots,a^{\delta_m(a)}\) 模 \(m\) 两两不同余;
-
\(a^n \equiv 1 \pmod m \iff \delta_m(a) \mid n\);
- 推论:\(a^p \equiv a^q \pmod m \iff p \equiv q \pmod {\delta_m(a)}\)
- 设 \(m \in \mathbb{N}^*\),\(a,b \in \mathbb{Z}\),\(\gcd(a,m) = \gcd(b,m) = 1\),则:
证明:
\[\begin{aligned}&\because (ab)^{\delta_m(ab)} \equiv 1 \pmod m\\&\therefore (ab)^{\delta_m(ab)\delta_m(b)} \equiv 1 \pmod m\\&\therefore a^{\delta_m(ab)\delta_m(b)} \equiv 1 \pmod m\\&\therefore \delta_m(a) \mid \delta_m(ab)\delta_m(b)\\[1ex]&\because \gcd(\delta_m(a),\delta_m(b)) = 1\\&\therefore \delta_m(a) \mid \delta_m(ab)\end{aligned} \]
- 充分性:
对称地,可得:
\[\delta_m(b) \mid \delta_m(ab) \]于是:
\[\delta_m(a)\delta_m(b) \mid \delta_m(ab) \]而又有:
\[\begin{aligned}&\because\left(a^{\delta_m(a)}\right)^{\delta_m(b)}\left(b^{\delta_m(b)}\right)^{\delta_m(a)} \equiv 1 \pmod m\\&\therefore (ab)^{\delta_m(a)\delta_m(b)} \equiv 1 \pmod m\end{aligned} \]易得:
\[\delta_m(ab) \mid \delta_m(a)\delta_m(b) \]综上:
\[\delta_m(a)\delta_m(b) = \delta_m(ab) \]\[\begin{aligned}&\because a^{\delta_m(a)}\equiv 1 \pmod m \And b^{\delta_m(b)} \equiv 1 \pmod m\\&\therefore (ab)^{\operatorname{lcm}(\delta_m(a),\delta_m(b))} \equiv 1 \pmod m\\&\therefore\delta_m(ab) \mid \operatorname{lcm}(\delta_m(a),\delta_m(b))\\&\quad \implies \delta_m(a)\delta_m(b) \mid\operatorname{lcm}(\delta_m(a),\delta_m(b))\\&\therefore \gcd(\delta_m(a),\delta_m(b)) = 1\end{aligned} \]
- 必要性
- 设 \(k \in \mathbb{N}\),\(m \in \mathbb{N}^*\),\(a \in \mathbb{Z}\),\(\gcd(a,m) = 1\),则:
证明:
\(\because \delta_m(a) \mid k\cdot \delta_m(a^k)\)
鉴于阶的最小性,所以 \(\delta_m(a^k)\) 的取值为 \(\frac{\delta_m(a)}{\gcd(\delta_m(a),k)}\)。
原根
定义
设 \(m \in \mathbb{N}^*\),\(a \in \mathbb{Z}\)。若 \(\gcd(a,m) = 1 \land \delta_m(a) = \varphi(m)\),则称 \(a\) 为模 \(m\) 的原根。
原根判定定理
设 \(a,m \in \mathbb{N}^*\) 且 \(\gcd(a,m) = 1\),则:
\[a\ \text{是模}\ m\ \text{意义下的原根}\ \iff \forall p \mid \varphi(m)\,(p \in prime),m \not\mid a^{\frac{\varphi(m)}{q}-1} \]原根个数
\[\text{若}\ m \ \text{有原根,则其原根个数为}\ \varphi(\varphi(m)) \]原根存在定理
\[m\ \text{有原根}\ \iff n = \begin{cases}1\\2\\4\\p^k\\2p^k\end{cases},(p\ \text{为奇素数}\ ,k \ge 1) \]最小原根的数量级
若一个数 \(m\) 有原根,则它的最小原根不大于 \(m^{0.25}\)。
标签:ab,原根,pmod,mid,笔记,delta,equiv From: https://www.cnblogs.com/bikuhiku/p/primitive_root.html