首页 > 其他分享 >MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类|附代码数据

MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类|附代码数据

时间:2024-05-11 22:53:01浏览次数:31  
标签:预测 训练 长短期 时间 MATLAB 序列 LSTM 数据

原文链接:http://tecdat.cn/?p=26318

原文出处:拓端数据部落公众号

 

最近我们被客户要求撰写关于长短期记忆 (LSTM) 神经网络的研究报告,包括一些图形和统计输出。

此示例说明如何使用长短期记忆 (LSTM) 网络对序列数据的每个时间步长进行分类。

要训​​练深度神经网络对序列数据的每个时间步进行分类,可以使用 序列对序列 LSTM 网络。序列序列 LSTM 网络使您能够对序列数据的每个单独时间步进行不同的预测。

此示例使用从佩戴在身上的智能手机获取的传感器数据。该示例训练 LSTM 网络,以在给定时间序列数据的情况下识别佩戴者的活动,这些数据表示三个不同方向的加速度计读数。训练数据包含七个时间序列数据。每个序列具有三个特征并且长度不同。数据集包含六个训练观察和一个测试观察。

加载序列数据

加载人类活动识别数据。该数据包含从佩戴在身上的智能手机获得的七个时间序列的传感器数据。每个序列具有三个特征并且长度不同。这三个特征对应于三个不同方向的加速度计读数。

   
XTrain

在图中可视化一个训练序列。绘制第一个训练序列的第一个特征,并根据相应的活动为绘图着色。

   
figure
for j = 1:numel
    label = classes;
    idx = find
    hold on
    plot
end

定义 LSTM 网络架构

定义 LSTM 网络架构。将输入指定为大小为 3 的序列(输入数据的特征数)。指定一个具有 200 个隐藏单元的 LSTM 层,并输出完整的序列。最后,通过包括一个大小为 5 的全连接层,然后是一个 softmax 层和一个分类层来指定五个类。

   


layers = [ ...
    seuenceutLaer
    lsmLyer
    fulyCnectdyer
    sotmLyer
    clssfcainLyr];

指定训练选项。将求解器设置为 'adam'。训练 60 个 epoch。

使用指定的训练选项训练 LSTM 网络 trainNetwork。每个 mini-batch 包含整个训练集,因此每个 epoch 更新一次图。序列很长,因此处理每个小批量和更新绘图可能需要一些时间。

测试 LSTM 网络

加载测试数据并在每个时间步进行分类。

加载人类活动测试数据。 XTest 包含一个维度为 3 的单个序列。  YTest is 包含与每个时间步相对应的分类标签序列。

   

figure
plot
xlabel
legend
title

使用对测试数据进行分类 。

   
YPrd = clssif;

或者,您可以使用 一次进行一个时间步长的预测 。通常,与一次一个时间步进行预测相比,对完整序列进行预测会更快。有关如何通过在单个时间步预测之间更新网络来预测未来时间步的示例。

计算预测的准确性。

   
ac = sum(YPrd == YTst{1})./nul(YTs{1})

 

使用绘图将预测与测试数据进行比较。

   
plot
hold on
plot
hold off


最受欢迎的见解

1.用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

2.Python中利用长短期记忆模型LSTM进行时间序列预测分析 – 预测电力消耗数据

3.python在Keras中使用LSTM解决序列问题

4.Python中用PyTorch机器学习分类预测银行客户流失模型

5.R语言多元Copula GARCH 模型时间序列预测

6.在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析

7.R语言中ARMA,ARIMA(Box-Jenkins),SARIMA和ARIMAX模型用于预测时间序列数

8.R语言估计时变VAR模型时间序列的实证研究分析案例

9.用广义加性模型GAM进行时间序列分析

标签:预测,训练,长短期,时间,MATLAB,序列,LSTM,数据
From: https://www.cnblogs.com/tecdat/p/18187316

相关文章

  • 基于harris角点和RANSAC算法的图像拼接matlab仿真
    1.算法运行效果图预览   2.算法运行软件版本MATLAB2022a 3.算法理论概述      Harris角点检测是一种局部特征检测方法,它寻找图像中具有显著局部曲率变化的位置,即边缘转折点或角点。主要通过计算图像窗口内的自相关矩阵M,并对其特征值进行评估。Harris响应函......
  • m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下: 遗传优化迭代过程:   误码率对比:     2.算法涉及理论知识概要       低密度奇偶校验码(Low-DensityParity-CheckCode,LDPC码)因其优越的纠错性能和近似香农极限的潜力,在现代通信系统中扮演着重要角色。......
  • m基于Q-Learning强化学习的迷宫路线规划策略matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:     2.算法涉及理论知识概要       Q-Learning是一种无模型的强化学习算法,它能够使代理(Agent)在与环境互动的过程中学习最优策略,无需了解环境的完整动态模型。在迷宫路线规划问题中,Q-Learning被用来指导代理找到从起......
  • 基于表面法线法的二维人脸图构建三维人脸模型matlab仿真
    1.算法运行效果图预览   2.算法运行软件版本matlab2022a  3.算法理论概述二维人脸图像获取表面法线 首先,我们需要从二维灰度或者彩色人脸图像中估计表面法线。通常这一过程包括以下几个步骤: 人脸检测与对齐:确保人脸图像被准确检测并进行标准化对齐,以便后续......
  • 《安富莱嵌入式周报》第336期:开源计算器,交流欧姆表,高性能开源BLDC控制器,Matlab2024a,操
    周报汇总地址:http://www.armbbs.cn/forum.php?mod=forumdisplay&fid=12&filter=typeid&typeid=104 本周更新一期视频教程:BSP视频教程第30期:UDSISO14229统一诊断服务CAN总线专题,常用诊断执行流程精讲,干货分享,图文并茂https://www.armbbs.cn/forum.php?mod=viewthread&tid=12......
  • 基于WOA优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
    1.算法运行效果图预览优化前:    优化后:   2.算法运行软件版本matlab2022a 3.算法理论概述       时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(ConvolutionalNeuralNetwork,C......
  • LSTM时间序列预测中的一个常见错误以及如何修正
    当使用LSTM进行时间序列预测时,人们容易陷入一个常见的陷阱。为了解释这个问题,我们需要先回顾一下回归器和预测器是如何工作的。预测算法是这样处理时间序列的:一个回归问题是这样的:因为LSTM是一个回归量,我们需要把时间序列转换成一个回归问题。有许多方法可以做到这一点,一般......
  • m基于Yolov2深度学习网络的螺丝检测系统matlab仿真,带GUI界面
    1.算法仿真效果matlab2022a仿真结果如下:         2.算法涉及理论知识概要        基于YOLOv2(YouOnlyLookOnceversion2)深度学习网络的螺丝检测系统,是一种高效的目标检测方法,它在计算机视觉领域被广泛应用,尤其适合于实时检测和定位图像中的......
  • 基于WOA优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
    1.算法运行效果图预览woa优化前      woa优化后    2.算法运行软件版本matlab2022a 3.算法理论概述      时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(ConvolutionalNeur......
  • Matlab安装教程(Linux)
    解压安装包在虚拟机中,文件直接通过拖拽文件的方式将安装包拉入虚拟机时,文件通常存放在/tmp/VMwareDnD中,因此需要将存放文件位置的文件转移到/home/<用户名>/<存放目录>中参考命令如下:mv/tmp/VMwareDnD/<文件存放目录>/*/home/<用户名>/<存放目录>之后在存放压缩包的目录中,......