首页 > 其他分享 >Razavi - RF Microelectronics的笔记 - Differential Output Current

Razavi - RF Microelectronics的笔记 - Differential Output Current

时间:2024-05-06 11:27:01浏览次数:26  
标签:GS0 od frac OS1 Razavi align Differential Microelectronics RF

On page 400, example 6.26, we are asked to analyze a double-balanced circuit on its \(IP_2\).

image

I don't get where does (6.127) come from. Since there's no explanation on (6.127), I guess this equation is obvious. So I reduce the problem and try to derive it by myself.

The reduced problem is as follows.

image

\(M_1\) and \(M_2\) are two identical NMOS. \(I_{SS}\) is the biasing current source. \(V_{RF}^{+}+V_{OS1}\) and \(V_{RF}^-\) are differential input voltages. \(V_{OS1}\) is the offset. \(I_{D1}\) and \(I_{D2}\) are drain currents. The goal is to derive differential output current \(I_{D1}-I_{D2}\).

I don't think this is a small-signal model here because in (6.127), it seems that transconductance is not linearized and depends on bias.

We first write the relation between overdrive voltage and drain current for \(M_1\) and \(M_2\)

\[\begin{align} & I_{D1} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{GS0}+V_{RF}^++V_{OS1}-V_{TH})^2 \\ & I_{D2} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{GS0}+V_{RF}^--V_{TH})^2 \end{align}\]

The differential input voltage is

\[\begin{align} \Delta V_{in} = V_{RF}^+ - V_{RF}^- \end{align}\]

And drain current of \(M_{1}\) and \(M_{2}\) are offered by \(I_{SS}\), i.e

\[\begin{align} I_{D1}+I_{D2} = I_{SS} \end{align}\]

The differential output current is

\[\begin{align} \Delta I_{out} = I_{D1} - I_{D2} \\ \end{align}\]

Replace \(I_{D1}\) and \(I_{D2}\) in \((5)\) using \((1)\) and \((2)\), we have

\[\begin{align} \Delta I_{out} & = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}[(V_{GS0}+V_{RF}^++V_{OS1}-V_{TH})^2 - (V_{GS0}+V_{RF}^--V_{TH})^2] \\ & = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(\Delta V_{in}+V_{OS1})(V_{GS0}+V_{RF}^++V_{OS1}-V_{TH}+V_{GS0}+V_{RF}^--V_{TH}) \end{align}\]

\((7)\) is very similar to (6.127) in the book except for the last term.

To make the derivation trivial we rewrite \((7)\) in terms of over overdrive voltages

\[\begin{align} (\underbrace{V_{GS0}+V_{RF}^++V_{OS1}-V_{TH}}_{V_{od,1}}+\underbrace{V_{GS0}+V_{RF}^--V_{TH}}_{V_{od,2}}) = V_{od,1} + V_{od,2} \end{align}\]

Noticing that in (6.127), last term is expressed in terms of \(I_{SS}\) and $ \Delta V_{in}+V_{OS1} = V_{od,1} - V_{od,2}$ (I don't think the sign before \(V_{OS1}\) matters because it is an offset), I guess we can prove this equality, which is

\[\begin{align} V_{od,1} + V_{od,2} = \sqrt{\frac{4I_{SS}}{\mu_{n}C_{ox}\frac{W}{L}}-(V_{od,1} - V_{od,2})^2} \end{align}\]

We can replace \((1)\),\((2)\),\((4)\) in \((9)\)

\[\begin{align} \sqrt{\frac{4I_{SS}}{\mu_{n}C_{ox}\frac{W}{L}}-(V_{od,1} - V_{od,2})^2} & \\ & =\sqrt{\frac{4(I_{D1}+I_{D2})}{\mu_{n}C_{ox}\frac{W}{L}}-(V_{od,1} - V_{od,2})^2} \\ & = \sqrt{2(V_{od,1}^2 + V_{od,2}^2)-(V_{od,1} - V_{od,2})^2} \\ & = \sqrt{(V_{od,1} + V_{od,2})^2} \\ & = (V_{od,1} + V_{od,2}) \end{align}\]

QED

标签:GS0,od,frac,OS1,Razavi,align,Differential,Microelectronics,RF
From: https://www.cnblogs.com/lilulounote/p/18174644

相关文章

  • Razavi - RF Microelectronics的笔记 - Current-Driven Passive Mixer
    Onpage367,whilediscussingaboutcurrent-drivenpassivemixer,thereisthissaying:theswitchesinFig.6.39(b)alsomixthebasebandwaveformswiththeLO,deliveringtheupconvertedvoltagestonodeA.Iamquiteconfusedonwheredoesthiswave......
  • Deep Learning with Differential Privacy
    差分隐私深度学习(CCS16'(CCFA))时隔半年重读这篇论文,终于懂了个七七八八,现在来做一下总结。摘要基于神经网络的机器学习技术在众多领域都取得了令人瞩目的成果。通常,模型的训练需要大量具有代表性的数据集,这些数据集可能是众包的,包含敏感信息。模型不应暴露这些数据集中的隐......
  • Federated Learning with Differential Privacy:Algorithms and Performance Analysis
    2024/2/11大四做毕设的时候第一次读这篇论文,当时只读了前一部分,后面关于收敛界推导证明的部分没有看,现在重新完整阅读一下这篇文章。本文贡献提出了一种基于差分隐私(DP)概念的新框架,其中在聚合之前将人工噪声添加到客户端的参数中,即模型聚合前加噪FL(NbAFL)我们提出了Nb......
  • Differential Equations
    Firstorderdifferentialequations:$\frac{{\rmd}y}{{\rmd}x}+Fy=G$​$$\begin{aligned}&\frac{{\rmd}y}{{\rmd}x}+Fy=G\qquadz\frac{{\rmd}y}{{\rmd}x}+Fzy=Gz\qquadz\frac{{\rmd}y}{{\rmd}x}+\frac{{\rmd}z}{{\rmd}x}y=\frac{{\rmd......
  • 差分符号熵Differential symbolic Entropy,多尺度差分符号熵,层次差分符号熵,时移多尺度
    差分符号熵DifferentialsymbolicEntropy,多尺度差分符号熵,层次差分符号熵,时移多尺度差分符号熵,复合多尺度差分符号熵,精细复合多尺度差分符号熵(Matlab代码获取链接:https://mbd.pub/o/bread/mbd-ZZmblZlv)熵或复杂性度量区分时间序列类别和理解潜在动态的能力是众所周知的。该算法......
  • Understanding q-value and FDR in Differential Expression Analysis
     Understandingq-valueandFDRinDifferentialExpressionAnalysisDaqianIntroductiontoq-valueandFDRIndifferentialgeneexpressionanalysis,researchersareoftenconfrontedwiththechallengeofdistinguishingtruesignals—thosegenesthat......
  • 【五期李伟平】CCF-A(S&P'20)The Value of Collaboration in Convex Machine Learning w
    NanW.,etal.“TheValueofCollaborationinConvexMachineLearningwithDifferentialPrivacy.”2020IEEESymposiumonSecurityandPrivacy.304-317.  联邦学习场景中,在适应度函数平滑、强凸、利普斯特连续的条件下,估算各客户端使用不同隐私预算时最终全局模......
  • Proj. Unknown: Deciding Differential Privacy of Online Algorithms with Multiple
    Paperhttps://arxiv.org/abs/2309.06615Abstract背景:自动机A被称作查分隐私自动机:当对某些D,对任何隐私预算ε>0,该自动机是Dε-differentiallyprivate(ADiPautomatonisaparametricautomatonwhosebehaviordependsontheprivacybudget......
  • 微分平坦(differential flatness)的简易理解
    对于运动控制下的系统建模,如果规划控制的变量太多,产生的维度就太多,如无人机变量为12个,即12维空间,同时规划12个变量不现实,所以考虑使用少数几个变量及其有限阶导数代表其他变量,这样一来只需要对少数几个变量进行规划则可以达到对所有变量规划。  参考:https://zhuanlan.zhihu.c......
  • Fourier Analysis and Nonlinear Partial Differential Equations 阅读笔记 (第一章)
    实分析基础Holder与卷积不等式首先从经典的Holder不等式入手.命题:经典情况下的Holder不等式设\((X,\mu)\)是测度空间,\((p,q,r)\in[1,\infty]^3\)满足\[\frac{1}{p}+\frac{1}{q}=\frac{1}{r}\]如果\((f,g)\inL^p(X,\mu)\timesL^q(X,\mu)\),则\(f\cdotg\inL^r(X,\m......