likelihood-based models,通过(近似)最大似然直接学习分布的probability density(或mass)函数。典型的基于似然的模型包括自回归模型、归一化流模型、基于能量的模型(EBMs)和变分自编码器(VAEs)。
概率质量函数(Probability Mass Function,PMF):概率质量函数用于描述离散随机变量的概率分布。它给出了随机变量取每个可能取值的概率。具体来说,对于一个离散随机变量 X,其概率质量函数可以表示为 P(X = x),其中 x 表示随机变量可能取的每一个离散值。
概率密度函数(Probability Density Function,PDF):概率密度函数用于描述连续随机变量的概率分布。与概率质量函数不同,概率密度函数并不直接给出随机变量取某个特定值的概率,而是给出了随机变量在某个区间内取值的可能性大小。
\(q(X_1|X_{0})*q(X_{2}|X_{1})...q(X_t|X_{t-1})\)
标签:diffusion,概率,概率密度函数,函数,模型,基础知识,离散,model,随机变量 From: https://www.cnblogs.com/hackerk/p/18173506