首页 > 其他分享 >多项式板子

多项式板子

时间:2024-05-05 10:44:24浏览次数:13  
标签:__ const int 多项式 poly 板子 mm mod

本页面由洛谷云剪贴板进化而来。
免责:多项式可能未经良好测试,并不完善或可能执行时出现问题,如有问题请在本页评论区说明。
改自 Submission备份

feature:指令集优化ntt(来自 fjzzq2002);转置原理多点求值与插值;2log 多项式复合(逆)(改自 hly1204 github 版);开罐即食版多叉半在线卷积。

结构体名字就叫 poly,底层是 vector<u32>,使用负数可能会出错。
dft与idft由指令集优化,速度较快,放在了 namespace fast_number_theory_transform 中,函数名为 ntt(u32* ptr, int b)intt(u32* ptr, int b),\(\text{ptr}\) 为指向 vector 头的指针,多项式长度为 \(2^b\)。
支持多叉半在线卷积,放在了 namespace __semiconvol__ 中,ln/exp/inv由此方法实现,较快(参数未调试)。

全局模数为 \(\text{mod}\),它的一个原根为 \(\text{proot}\)。

快进到重点:支持什么函数?怎么支持?

函数均以成员函数的方式提供,结构体本身作为自然的第一个参数多项式带入。除快速插值外,任何函数都不会改变结构体本身的值,所需的答案以返回值方式提供。下面称对应结构体的变量名为 f
例如:若要计算对应多项式的指数函数,只需要调用 f.exp(),其返回对应指数函数,且不会改变 f

  1. 多项式基础操作
    重载运算符的加减法与乘除法(也可以使用 += 等运算符,其中一个参数也可以为 int 类型);求导函数 deri();积分函数 intg(int c = 0),其中 \(c\) 为常数项;右复合 \(x^k\) shiftvar(int k)amp(int k)
  2. 单参数多项式基础函数
    对数函数 ln();指数函数 exp();开根 sqrt();开根后求逆 ivsqrt();一系列三角函数和反三角函数sin()cos()tan()asin()acos()atan();右复合 \(x + c\) shift(int c)
    \(O(n \log^2 n)\) 复合逆 composite_inv()
    【模板】Chirp Z 变换 ChirpZ(int c, int m)czt(int c, int m)
    基于转置原理的多点求值 eval(int n, poly a),求出 \(n\) 个点值 \(f(a_0), f(a_1), \dots, f(a_{n-1})\);基于转置原理的快速插值 intp(int n, const poly& x, const poly& y),根据 \(n\) 个点值 \((x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\) 还原最短多项式并存储在 f 中(由于该操作不会用到 f 中的值,f 初始时被视为空结构体,最终会覆盖其中的所有值);
  3. 双参数多项式基础函数
    包含由半在线卷积实现的除法函数 quo(const poly& g),返回 \(f/g\),保留到 \(f\) 的最高次项;
    \(O(n \log^2 n)\) 复合 composite(const poly& g, int n),返回 \(f(g)\) 的前 \(n\) 项(默认为 \(f\) 的项数);
    以 lambda 表达式形式(非成员函数)实现的 enum_kth(const poly& f, const poly& g, int k, int n),返回 \(f(y) = [x^k]\frac{g(x)}{1 - yf(x)} = \sum_{i = 0}^{n - 1}\left( [x^k] g(x) f^i(x)\right) y^i\),位于 composite_inv 函数内
  4. 多项式杂函数
    包含翻转多项式系数 rev();返回 \(\text{mod } x^{n+1}\) 的一个截断 split(int n);输入输出流函数,可以在确定长度 \(n\) 后直接用 cin 由低到高输入 \(n\) 个数,以及由低到高输出用空格分隔的系数;shrink() 收缩 vector 长度使最高次项为常数项或最高的不为 \(0\) 的项;clear() 清空多项式;resize(int n) 将多项式的最高次项改变为 \(x^{n-1}\);redegree(int n) 将多项式的最高次项改变为 \(x^{n}\);用户定义字面量 operator""_p,例如代码片段 "x^3 + 4x + 5"_p 会被转换成 poly 类型的多项式 \(x^3 + 4x + 5\);
  5. 半在线卷积
    语法是 src(poly &f, const poly& g, const function<void(const int &, poly &, const poly &)> &relax
    具体地,我们已知 \(g\) 的系数,要求 \(f\) 满足

    \[f[n] = R\left(\sum_{i = 0}^n f[i] g[n - i]\right) \]

    其中 \(R\) 是一个函数。程序会把 \(S = \sum_{i = 0}^n f[i] g[n - i]\) 算好,并存储在 \(f[n]\) 中,我们只需要提供 relax(const int& n, poly& f, const poly& g),由 \(S\) 计算出 \(f[n]\)。结果会存储在多项式类 \(f\) 中。复杂度 \(O(n \frac{\log^2 n}{\log\log n})\)。
    例如:这里介绍了 \(\exp\) 的半在线卷积形式,我们知道 \(R(S) = S/n\),因此提前在 \(g[n]\) 处乘 \(n\),我们只需要提供 relax[&](const int &n, poly &f, const poly &g) {if(n==0)f[n]=1;else f[n]=1ll*f[n]*ginv(n)%mod;}
  6. 数学函数
    包含快速幂 qp(i64 x, int y),返回 \(x^y\) 在模 \(\text{mod}\) 意义下的值;lg(u32 x) 返回以 2 为底 \(x\) 的对数的值;norm(u32 x) 保证 \(x\) 不大于 \(2\text{mod}\),返回 \(x\) 在模 \(\text{mod}\) 意义下的值;二次剩余函数 isqrt(u32 x),实现了 cipolla 算法,返回 \(x\) 在模 \(\text{mod}\) 意义下的二次剩余。
    阶乘函数 gfac(u32 n);逆元函数 ginv(u32 n);阶乘逆元函数 gifc(u32 n);组合数函数 gC(u32 n, u32 m)无需初始化,直接调用即可,底层复杂度关于值域线性;

重点完了。
指令集优化ntt需要内存池,大小由变量 pool_siz 确定。定义内存池部分的代码为

u32 pool[(pool_siz) * 4] __attribute__((aligned(64))), *ptr = pool;
u32 *p0[(pool_siz)], *p1[(pool_siz)], *q0[(pool_siz)], *q1[(pool_siz)];

可以视情况调整其大小,默认值为 \(2^{23}\)。

多项式
// #pragma GCC optimize("-Ofast","-funroll-all-loops","-ffast-math")
// #pragma GCC optimize("-fno-math-errno")
// #pragma GCC optimize("-funsafe-math-optimizations")
// #pragma GCC optimize("-freciprocal-math")
// #pragma GCC optimize("-fno-trapping-math")
// #pragma GCC optimize("-ffinite-math-only")
// #pragma GCC optimize("-fno-stack-protector")
// #pragma GCC target ("avx2","sse4.2","fma")
#include <immintrin.h>
namespace __POLY__ {
    const int mod = 998244353, proot = 3, pool_siz = 1 << 23;
    typedef unsigned int u32;
    typedef unsigned long long u64;
    typedef vector<u32> vu32;
    namespace math {
        inline int qp(long long x, int y, int ans = 1) {
            for (y < 0 ? y += mod - 1 : 0; y; y >>= 1, x = x * x % mod)
                if (y & 1) ans = ans * x % mod;
            return ans;
        }
        inline constexpr int lg(u32 x) { return x == 0 ? -1 : ((int)sizeof(int) * __CHAR_BIT__ - 1 - __builtin_clz(x)); }
        inline u32 fst_mul(u32 x, u64 p, u64 q) { return x * p - (q * x >> 32) * mod; }
        inline u32 norm(u32 m) { return m >= mod ? m - mod : m; }
        const u32 modm2 = mod + mod;
        vu32 __fac({1, 1}), __ifc({1, 1}), __inv({0, 1});
        inline void __prep(int n) {
            static int i = 2;
            if (i < n) for (__fac.resize(n), __ifc.resize(n), __inv.resize(n); i < n; i++)
                __fac[i] = 1ll * i * __fac[i - 1] % mod, __inv[i] = 1ll * (mod - mod / i) * __inv[mod % i] % mod, __ifc[i] = 1ll * __inv[i] * __ifc[i - 1] % mod;
        }
        inline u32 gfac(u32 x) { return __prep(x + 1), __fac[x]; }
        inline u32 gifc(u32 x) { return __prep(x + 1), __ifc[x]; }
        inline u32 ginv(u32 x) { return __prep(x + 1), __inv[x]; }
        inline u32 gC(u32 n, u32 m) {
            if (n < m) return 0;
            return 1ll * gfac(n) * gifc(m) % mod * gifc(n - m) % mod;
        }

        u32 I = 0;
        struct cpl {
            u32 x, y;
            cpl(u32 _x = 0, u32 _y = 0) : x(_x), y(_y) {}
            inline cpl operator*(const cpl &a) const { return cpl((1ull * x * a.x + 1ull * I * y % mod * a.y) % mod, (1ull * x * a.y + 1ull * y * a.x) % mod); }
        };
        inline cpl cplpow(cpl a, int y, cpl b = cpl(1, 0)) {
            for (; y; y >>= 1, a = a * a) if (y & 1) b = b * a;
            return b;
        }
        inline u32 isqrt(u32 x) {
            static mt19937 rnd(mod);
            if (mod == 2 || !x || x == 1) return x;
            u32 a = 0;
            do {
                a = rnd() % mod;
            } while (qp((1ull * a * a + mod - x) % mod, mod >> 1) != mod - 1);
            I = (1ll * a * a + mod - x) % mod;
            a = cplpow(cpl(a, 1), (mod + 1) >> 1).x;
            return min(a, mod - a);
        }
    } using namespace math;
    namespace polynomial {
        const int maxbit = 22;
        namespace fast_number_theory_transform {
            u32 pool[(pool_siz) * 4] __attribute__((aligned(64))), *ptr = pool;
            u32 *p0[(pool_siz)], *p1[(pool_siz)], *q0[(pool_siz)], *q1[(pool_siz)];
            __attribute__((always_inline)) inline void bit_flip(u32 *p, int t) {
                for (int i = 0, j = 0; i < t; ++i) {
                    if (i > j) swap(p[i], p[j]);
                    for (int l = t >> 1; (j ^= l) < l; l >>= 1) ;
                }
            }
            void prep(int n) {
                static int t = 1;
                for (; t < n; t <<= 1) {
                    int g = qp(proot, (mod - 1) / (t * 2));
                    u32 *p, *q;
                    p = p0[t] = ptr;
                    ptr += max(t, 16);
                    p[0] = 1;
                    for (int m = 1; m < t; ++m)
                        p[m] = p[m - 1] * (ull)g % u32(mod);
                    bit_flip(p, t);
                    q = q0[t] = ptr;
                    ptr += max(t, 16);
                    for (int i = 0; i < t; ++i)
                        q[i] = (ull(p[i]) << 32) / mod;
                    g = qp(g, mod - 2);
                    p = p1[t] = ptr;
                    ptr += max(t, 16);
                    p[0] = 1;
                    for (int m = 1; m < t; ++m)
                        p[m] = p[m - 1] * (ull)g % u32(mod);
                    bit_flip(p, t);
                    q = q1[t] = ptr;
                    ptr += max(t, 16);
                    for (int i = 0; i < t; ++i)
                        q[i] = (ull(p[i]) << 32) / mod;
                }
            }
            typedef unsigned long long ull;
            __attribute__((always_inline)) inline u32 my_mul(u32 a, u32 b, u32 c) { return b * (ull)a - ((ull(a) * c) >> 32) * ull(mod); }
            __attribute__((always_inline)) inline __m128i my_mullo_epu32(const __m128i &a, const __m128i &b) { return (__m128i)((__v4su)a * (__v4su)b); }
            __attribute__((always_inline)) inline __m128i my_mulhi_epu32(const __m128i &a, const __m128i &b) {
                __m128i a13 = _mm_shuffle_epi32(a, 0xF5);
                __m128i b13 = _mm_shuffle_epi32(b, 0xF5);
                __m128i prod02 = _mm_mul_epu32(a, b);
                __m128i prod13 = _mm_mul_epu32(a13, b13);
                __m128i prod01 = _mm_unpacklo_epi32(prod02, prod13);
                __m128i prod23 = _mm_unpackhi_epi32(prod02, prod13);
                __m128i prod = _mm_unpackhi_epi64(prod01, prod23);
                return prod;
            }
            void ntt(u32 *__restrict__ x, int bit) {
                int n = 1 << bit, t = n;
                prep(n);
                for (int m = 1; m < n; m <<= 1) {
                    t >>= 1;
                    u32 *__restrict__ p = p0[m];
                    u32 *__restrict__ q = q0[m];
                    if (t == 1 or t == 2) {
                        u32 *xa = x, *xb = x + t;
                        for (int i = 0; i < m; ++i, xa += t + t, xb += t + t)
                            for (int j = 0; j < t; ++j) {
                                u32 u = xa[j] - (xa[j] >= modm2) * modm2;
                                u32 v = my_mul(xb[j], p[i], q[i]);
                                xa[j] = u + v;
                                xb[j] = u - v + modm2;
                            }
                    }
                    else if (t == 4) {
                        u32 *xa = x, *xb = x + t;
                        for (int i = 0; i < m; ++i, xa += t + t, xb += t + t) {
                            const __m128i p4 = _mm_set1_epi32(p[i]), q4 = _mm_set1_epi32(q[i]), mm = _mm_set1_epi32(mod + mod), m0 = _mm_set1_epi32(0), m1 = _mm_set1_epi32(mod);
                            for (int j = 0; j < t; j += 4) {
                                __m128i u = _mm_loadu_si128((__m128i *)(xa + j));
                                u = _mm_sub_epi32(u, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(u, mm), _mm_cmpgt_epi32(m0, u)), mm));
                                __m128i v = _mm_loadu_si128((__m128i *)(xb + j));
                                v = _mm_sub_epi32(my_mullo_epu32(v, p4), my_mullo_epu32(my_mulhi_epu32(v, q4), m1));
                                _mm_storeu_si128((__m128i *)(xa + j), _mm_add_epi32(u, v));
                                _mm_storeu_si128((__m128i *)(xb + j), _mm_add_epi32(_mm_sub_epi32(u, v), mm));
                            }
                        }
                    }
                    else {
                        u32 *xa = x, *xb = x + t;
                        for (int i = 0; i < m; ++i, xa += t + t, xb += t + t) {
                            const __m128i p4 = _mm_set1_epi32(p[i]), q4 = _mm_set1_epi32(q[i]), mm = _mm_set1_epi32(mod + mod), m0 = _mm_set1_epi32(0), m1 = _mm_set1_epi32(mod);
                            for (int j = 0; j < t; j += 8) {
                                __m128i u0 = _mm_loadu_si128((__m128i *)(xa + j));
                                __m128i u1 = _mm_loadu_si128((__m128i *)(xa + j + 4));
                                __m128i v0 = _mm_loadu_si128((__m128i *)(xb + j));
                                __m128i v1 = _mm_loadu_si128((__m128i *)(xb + j + 4));
                                u0 = _mm_sub_epi32(u0, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(u0, mm), _mm_cmpgt_epi32(m0, u0)), mm));
                                u1 = _mm_sub_epi32(u1, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(u1, mm), _mm_cmpgt_epi32(m0, u1)), mm));
                                v0 = _mm_sub_epi32(my_mullo_epu32(v0, p4), my_mullo_epu32(my_mulhi_epu32(v0, q4), m1));
                                v1 = _mm_sub_epi32(my_mullo_epu32(v1, p4), my_mullo_epu32(my_mulhi_epu32(v1, q4), m1));
                                _mm_storeu_si128((__m128i *)(xa + j), _mm_add_epi32(u0, v0));
                                _mm_storeu_si128((__m128i *)(xa + j + 4), _mm_add_epi32(u1, v1));
                                _mm_storeu_si128((__m128i *)(xb + j), _mm_add_epi32(_mm_sub_epi32(u0, v0), mm));
                                _mm_storeu_si128((__m128i *)(xb + j + 4), _mm_add_epi32(_mm_sub_epi32(u1, v1), mm));
                            }
                        }
                    }
                }
                for (int i = 0; i < n; ++i) x[i] -= (x[i] >= modm2) * modm2, x[i] -= (x[i] >= u32(mod)) * u32(mod);
            }
            void intt(u32 *__restrict__ x, int bit) {
                int n = 1 << bit, t = 1;
                prep(n);
                for (int m = (n >> 1); m; m >>= 1) {
                    u32 *__restrict__ p = p1[m];
                    u32 *__restrict__ q = q1[m];
                    if (t == 1 or t == 2) {
                        u32 *xa = x, *xb = x + t;
                        for (int i = 0; i < m; ++i, xa += t + t, xb += t + t)
                            for (int j = 0; j < t; ++j) {
                                u32 u = xa[j], v = xb[j];
                                xa[j] = u + v - (u + v >= modm2) * modm2;
                                xb[j] = my_mul(u - v + modm2, p[i], q[i]);
                            }
                    } else if (t == 4) {
                        u32 *xa = x, *xb = x + t;
                        for (int i = 0; i < m; ++i, xa += t + t, xb += t + t) {
                            const __m128i p4 = _mm_set1_epi32(p[i]), q4 = _mm_set1_epi32(q[i]), mm = _mm_set1_epi32(mod + mod), m0 = _mm_set1_epi32(0), m1 = _mm_set1_epi32(mod);
                            for (int j = 0; j < t; j += 4) {
                                __m128i u = _mm_loadu_si128((__m128i *)(xa + j));
                                __m128i v = _mm_loadu_si128((__m128i *)(xb + j));
                                __m128i uv = _mm_add_epi32(u, v);
                                _mm_storeu_si128((__m128i *)(xa + j), _mm_sub_epi32(uv, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(uv, mm), _mm_cmpgt_epi32(m0, uv)), mm)));
                                uv = _mm_add_epi32(_mm_sub_epi32(u, v), mm);
                                _mm_storeu_si128((__m128i *)(xb + j), _mm_sub_epi32(my_mullo_epu32(uv, p4), my_mullo_epu32(my_mulhi_epu32(uv, q4), m1)));
                            }
                        }
                    } else {
                        u32 *xa = x, *xb = x + t;
                        for (int i = 0; i < m; ++i, xa += t + t, xb += t + t) {
                            const __m128i p4 = _mm_set1_epi32(p[i]), q4 = _mm_set1_epi32(q[i]), mm = _mm_set1_epi32(mod + mod), m0 = _mm_set1_epi32(0), m1 = _mm_set1_epi32(mod);
                            for (int j = 0; j < t; j += 8) {
                                __m128i u0 = _mm_loadu_si128((__m128i *)(xa + j));
                                __m128i u1 = _mm_loadu_si128((__m128i *)(xa + j + 4));
                                __m128i v0 = _mm_loadu_si128((__m128i *)(xb + j));
                                __m128i v1 = _mm_loadu_si128((__m128i *)(xb + j + 4));
                                __m128i uv0 = _mm_add_epi32(u0, v0);
                                __m128i uv1 = _mm_add_epi32(u1, v1);
                                _mm_storeu_si128((__m128i *)(xa + j), _mm_sub_epi32(uv0, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(uv0, mm), _mm_cmpgt_epi32(m0, uv0)), mm)));
                                _mm_storeu_si128((__m128i *)(xa + j + 4), _mm_sub_epi32(uv1, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(uv1, mm), _mm_cmpgt_epi32(m0, uv1)), mm)));
                                uv0 = _mm_add_epi32(_mm_sub_epi32(u0, v0), mm);
                                uv1 = _mm_add_epi32(_mm_sub_epi32(u1, v1), mm);
                                _mm_storeu_si128((__m128i *)(xb + j), _mm_sub_epi32(my_mullo_epu32(uv0, p4), my_mullo_epu32(my_mulhi_epu32(uv0, q4), m1)));
                                _mm_storeu_si128((__m128i *)(xb + j + 4), _mm_sub_epi32(my_mullo_epu32(uv1, p4), my_mullo_epu32(my_mulhi_epu32(uv1, q4), m1)));
                            }
                        }
                    } t <<= 1;
                }
                u32 rn = qp(n, mod - 2);
                for (int i = 0; i < n; ++i) x[i] = x[i] * (ull)rn % mod;
            }
        }
        using fast_number_theory_transform::intt;
        using fast_number_theory_transform::ntt;
        struct poly {
            vu32 f;
            template <typename _Tp = size_t, typename _Tv = u32>
            poly(_Tp len = 1, _Tv same_val = 0) : f(len, same_val) {}
            poly(const vu32 &_f) : f(_f) {}
            poly(const vector<int> &_f) {
                f.resize(((int)_f.size()));
                for (int i = 0; i < ((int)_f.size()); i++) 
                    f[i] = _f[i] + ((_f[i] >> 31) & mod);
            }
            template <typename T> poly(initializer_list<T> _f) : poly(vector<T>(_f)) {}
            template <typename T> poly(T *__first, T *__last) : poly(vector<typename iterator_traits<T>::value_type>(__first, __last)) {}
            inline operator vu32() const { return f; }
            inline vu32::iterator begin() { return f.begin(); }
            inline vu32::iterator end() { return f.end(); }
            inline const vu32::const_iterator begin() const { return f.begin(); }
            inline const vu32::const_iterator end() const { return f.end(); }
            inline void swap(poly &_f) { f.swap(_f.f); }
            inline int degree() const { return (int)f.size() - 1; }
            inline int size() const { return (int)f.size(); }
            inline poly &resize(int x) { return f.resize(x), *this; }
            inline poly &redegree(int x) { return f.resize(x + 1), *this; }
            inline void clear() { f.resize(1), f[0] = 0; }
            inline void shrink() {
                int ndeg = f.size() - 1;
                while (ndeg > 0 && f[ndeg] == 0) ndeg--;
                f.resize(ndeg + 1);
            }
            inline void rev() { reverse(f.begin(), f.end()); }
            inline poly split(int n) const { return n <= 0 ? poly(1, 1) : (n < (int)f.size() ? poly(f.begin(), f.begin() + n + 1) : poly(*this).redegree(n)); }
            inline u32 &operator[](u32 x) { return f[x]; }
            inline u32 operator[](u32 x) const { return f[x]; }
            inline u32 get(u32 x) const { return x < f.size() ? f[x] : 0; }
            inline friend istream &operator>>(istream &in, poly &x) {
                for (int i = 0, _buf; i < x.size(); i++) in >> _buf, _buf %= mod, _buf += (_buf < 0) * mod, x[i] = _buf; 
                return in;
            }
            inline friend ostream &operator<<(ostream &out, const poly &x) {
                out << x[0];
                for (int i = 1; i < x.size(); i++) out << ' ' << x[i];
                return out;
            }
            inline u32 *data() { return f.data(); }
            inline const u32 *data() const { return f.data(); }
            inline poly &operator+=(const poly &a) {
                f.resize(max(f.size(), a.f.size()));
                for (int i = 0; i < a.f.size(); i++) f[i] = f[i] + a.f[i] - (f[i] + a.f[i] >= mod) * mod;
                return *this;
            }
            inline poly &operator-=(const poly &a) {
                f.resize(max(f.size(), a.f.size()));
                for (int i = 0; i < a.f.size(); i++) f[i] = f[i] - a.f[i] + (f[i] < a.f[i]) * mod;
                return *this;
            }
            inline poly &operator+=(const u32 &b) {
                f[0] = f[0] + b - mod * (f[0] + b >= mod);
                return *this;
            }
            inline poly &operator-=(const u32 &b) {
                f[0] = f[0] - b + mod * (f[0] < b);
                return *this;
            }
            inline poly operator+(const poly &a) const { return (poly(*this) += a); }
            inline poly operator-(const poly &a) const { return (poly(*this) -= a); }
            friend inline poly operator+(u32 a, const poly &b) { return (poly(1, a) += b); }
            friend inline poly operator-(u32 a, const poly &b) { return (poly(1, a) -= b); }
            friend inline poly operator+(const poly &a, u32 b) { return (poly(a) += poly(1, b)); }
            friend inline poly operator-(const poly &a, u32 b) { return (poly(a) -= poly(1, b)); }
            inline poly operator-() const {
                poly _f;
                _f.f.resize(f.size());
                for (int i = 0; i < _f.f.size(); i++) _f.f[i] = (f[i] != 0) * mod - f[i];
                return _f;
            }
            inline poly shiftvar(int k) const {
                poly ret(size());
                for (int i = 0; i * k <= degree(); ++i) ret[i * k] = f[i];
                return ret;
            }
            inline poly amp(int k) const {
                poly ret(size());
                for (int i = 0; i * k <= degree(); ++i) ret[i * k] = f[i];
                return ret;
            }
            inline poly &operator*=(const poly &a) {
                int n = degree(), m = a.degree();
                if (n <= 32 || m <= 32) {
                    f.resize(n + m + 1);
                    for (int i = n + m; i >= 0; i--) {
                        f[i] = 1ll * f[i] * a.f[0] % mod;
                        for (int j = max(1, i - n), j_up = min(m, i); j <= j_up; j++) f[i] = (f[i] + 1ll * f[i - j] * a.f[j]) % mod;
                    } return *this;
                }
                vu32 _f(a.f);
                int bit = lg(n + m) + 1;
                f.resize(1 << bit), _f.resize(1 << bit);
                ntt(f.data(), bit), ntt(_f.data(), bit);
                for (int i = 0; i < (1 << bit); i++) f[i] = 1ll * f[i] * _f[i] % mod;
                intt(f.data(), bit), f.resize(n + m + 1);
                return *this;
            }
            inline poly operator*(const poly &a) const { return (poly(*this) *= a); }
            template <typename T> inline friend poly operator*(const poly &a, const T &b) {
                poly ret(a);
                for (int i = 0; i < ret.f.size(); ++i) ret[i] = 1ll * ret[i] * b % mod;
                return ret;
            }
            template <typename T> inline friend poly operator*(const T &b, const poly &a) {
                poly ret(a);
                for (int i = 0; i < ret.f.size(); ++i) ret[i] = 1ll * ret[i] * b % mod;
                return ret;
            }
            template <typename T> inline poly &operator*=(const T &b) {
                for (int i = 0; i < f.size(); ++i) f[i] = 1ll * f[i] * b % mod;
                return *this;
            }
            inline poly &operator>>=(int x) { return f.resize(f.size() + x), memmove(f.data() + x, f.data(), 4 * (f.size() - x)), memset(f.data(), 0, 4 * x), *this; }
            inline poly operator>>(int x) const { return (poly(*this) >>= x); }
            inline poly &operator<<=(int x) { return x >= f.size() ? (clear(), *this) : (memmove(f.data(), f.data() + x, 4 * (f.size() - x)), f.resize(f.size() - x), *this); }
            inline poly operator<<(int x) const { return (poly(*this) <<= x); }
            inline poly &shiftindexwith(int x) { return x >= f.size() ? (memset(f.data(), 0, 4 * f.size()), *this) : (memmove(f.data(), f.data() + x, 4 * (f.size() - x)), memset(f.data(), 0, 4 * x), *this); }
            inline poly shiftindex(int x) const { return (poly(*this).shiftindexwith(x)); }
            inline poly inv() const;
            inline poly quo(const poly &g) const;
            inline poly operator/(const poly &g) { return f.size() == 1 ? poly(1, qp(g[0], -1, f[0])) : quo(g); }
            inline poly &quowith(const poly &g) { return f.size() == 1 ? (f[0] = qp(g[0], -1, f[0]), *this) : (*this = quo(g)); }
            inline poly deri() const {
                int n = degree();
                poly res;
                res.redegree(n - 1);
                for (int i = 1; i <= n; i++) res[i - 1] = 1ll * f[i] * i % mod;
                return res;
            }
            inline poly intg(u32 C = 0) const {
                int n = degree();
                poly res(1, C);
                res.redegree(n + 1);
                for (int i = 0; i <= n; i++) res[i + 1] = 1ll * ginv(i + 1) * f[i] % mod;
                return res;
            }
            inline poly pow(u32 x, u32 modphix = -1) {
                if (modphix == -1) modphix = x;
                int n = size() - 1;
                long long empt = 0;
                while (empt <= n and !f[empt]) ++empt;
                if (1ll * empt * x > n) return poly(size());
                poly res(size());
                for (int i = 0; i <= n - empt; ++i) res[i] = f[i + empt];
                int val_0 = res[0], inv_0 = qp(val_0, mod - 2), pow_0 = qp(val_0, modphix);
                for (int i = 0; i <= n - empt; ++i) res[i] = 1ll * res[i] * inv_0 % mod;
                res = (res.ln() * x).exp();
                empt *= x;
                for (int i = n; i >= empt; --i) res[i] = 1ll * res[i - empt] * pow_0 % mod;
                for (int i = empt - 1; i >= 0; --i) res[i] = 0;
                return res;
            }
            inline poly ivsqrt() const {
                int nsize = f.size(), mxb = lg(f.size() - 1) + 1;
                vu32 a(1 << mxb), _f(f);
                _f.resize(1 << mxb);
                a[0] = qp(isqrt(f[0]), mod - 2);
                for (int nb = 0; nb < mxb; nb++) {
                    vu32 _a(a.begin(), a.begin() + (1 << nb)), _b(_f.begin(), _f.begin() + (2 << nb));
                    _a.resize(4 << nb), _b.resize(4 << nb);
                    ntt(_a.data(), nb + 2), ntt(_b.data(), nb + 2);
                    for (int i = 0; i < (4 << nb); i++)
                        _a[i] = 1ull * (mod - _a[i]) * _a[i] % mod * _a[i] % mod * _b[i] % mod, _a[i] = (_a[i] + (_a[i] & 1) * mod) >> 1;
                    intt(_a.data(), nb + 2), memcpy(a.data() + (1 << nb), _a.data() + (1 << nb), 4 << nb);
                }
                return a.resize(nsize), a;
            }
            inline poly sqrt() const {
                if (f.size() == 1) return poly(1, isqrt(f[0]));
                if (f.size() == 2 && f[0] == 1)
                    return poly(vector<int>{1, (int)(1ll * f[1] * (mod + 1) / 2 % mod)});
                int nsize = f.size(), mxb = lg(nsize - 1) + 1;
                vu32 a(1 << mxb), _f(f), _b;
                _f.resize(1 << mxb);
                a[0] = qp(isqrt(f[0]), mod - 2);
                for (int nb = 0; nb < mxb - 1; nb++) {
                    vu32 _a(a.begin(), a.begin() + (1 << nb));
                    _b = vu32(_f.begin(), _f.begin() + (2 << nb));
                    _a.resize(4 << nb), _b.resize(4 << nb);
                    ntt(_a.data(), nb + 2), ntt(_b.data(), nb + 2);
                    for (int i = 0; i < (4 << nb); i++)
                        _a[i] = 1ull * (mod - _a[i]) * _a[i] % mod * _a[i] % mod * _b[i] % mod, _a[i] = (_a[i] + (_a[i] & 1) * mod) >> 1;
                    intt(_a.data(), nb + 2);
                    memcpy(a.data() + (1 << nb), _a.data() + (1 << nb), 4 << nb);
                }
                ntt(a.data(), mxb);
                vu32 _a(a), g0(a);
                for (int i = 0; i < (1 << mxb); i++) a[i] = 1ll * a[i] * _b[i] % mod;
                intt(a.data(), mxb), memset(a.data() + (1 << (mxb - 1)), 0, 2 << mxb);
                ntt(a.data(), mxb), ntt(_f.data(), mxb);
                for (int i = 0; i < (1 << mxb); i++)
                    a[i] = (1ll * a[i] * a[i] + mod - _f[i]) % mod * (mod - _a[i]) % mod, a[i] = (a[i] + (a[i] & 1) * mod) >> 1;
                intt(a.data(), mxb);
                memcpy(g0.data() + (1 << (mxb - 1)), a.data() + (1 << (mxb - 1)), 2 << mxb);
                return g0;
            }
            inline poly czt(int c, int m) const {
                poly ret(f);
                int inv = qp(c, mod - 2), n = ret.size();
                ret.resize(m);
                poly F(n), G(n + m);
                for (int i = 0, p1 = 1, p2 = 1; i < n; ++i) {
                    F[n - i - 1] = 1ll * ret[i] * p1 % mod;
                    if (i > 0) p2 = 1ll * p2 * inv % mod, p1 = 1ll * p1 * p2 % mod;
                }
                for (int i = 0, p1 = 1, p2 = 1; i < n + m; ++i) {
                    G[i] = p1;
                    if (i > 0) p2 = 1ll * p2 * c % mod, p1 = 1ll * p1 * p2 % mod;
                }
                F = F * G;
                for (int i = 0, p1 = 1, p2 = 1; i < m; ++i) {
                    ret[i] = 1ll * F[i + n - 1] * p1 % mod;
                    if (i > 0) p2 = 1ll * p2 * inv % mod, p1 = 1ll * p1 * p2 % mod;
                }
                return ret;
            }
            inline poly ChirpZ(int c, int m) const { return czt(c, m); }
            inline poly shift(int c) const {
                c %= mod;
                c = c + (c < 0) * mod;
                if (c == 0) return *this;
                poly A(size()), B(size()), ret(size());
                for (int i = 0; i < size(); ++i) A[size() - i - 1] = 1ll * f[i] * gfac(i) % mod;
                for (int i = 0, pc = 1; i < size(); ++i, pc = 1ll * pc * c % mod)
                    B[i] = 1ll * pc * gifc(i) % mod;
                A *= B, A.resize(size());
                for (int i = 0; i < size(); ++i) ret[i] = 1ll * A[size() - i - 1] * gifc(i) % mod;
                return ret;
            }
            inline poly fdt() const {
                poly F(*this), E(size());
                for (int i = 0; i < size(); ++i) E[i] = gifc(i);
                F *= E, F.resize(size());
                for (int i = 0; i < size(); ++i) F[i] = 1ll * F[i] * gfac(i) % mod;
                return F;
            }
            inline poly ifdt() const {
                poly F(*this), E(size());
                for (int i = 0; i < size(); ++i) F[i] = 1ll * F[i] * gifc(i) % mod;
                for (int i = 0; i < size(); ++i)
                    if (i & 1) E[i] = mod - gifc(i);
                    else E[i] = gifc(i);
                return (F * E).split(degree());
            }
            inline poly ln() const;
            inline poly exp() const;
            inline poly eval(int n, poly a) const;
            inline poly intp(int n, const poly &x, const poly &y);
            inline poly sin() const {
                int omega_4 = qp(proot, (mod - 1) >> 2);
                poly F = ((*this) * omega_4).exp();
                return qp(omega_4 * 2, mod - 2) * (F - F.inv());
            }
            inline poly cos() const {
                int omega_4 = qp(proot, (mod - 1) >> 2);
                poly F = ((*this) * omega_4).exp();
                return qp(2, mod - 2) * (F + F.inv());
            }
            inline poly tan() const { return sin() / cos(); }
            inline poly asin() const {
                poly A = deri(), B = (*this) * (*this);
                B.resize(size());
                B = (1 - B).ivsqrt();
                return (A * B).intg().split(degree());
            }
            inline poly acos() const {
                poly A = (mod - 1) * deri(), B = (*this) * (*this);
                B.resize(size());
                B = (1 - B).ivsqrt();
                return (A * B).intg().split(degree());
            }
            inline poly atan() const {
                poly A = deri(), B = 1 + (*this) * (*this);
                B.resize(size());
                B = B.inv();
                return (A * B).intg().split(degree());
            }
            inline poly composite_inv(int n = -1) const {
                if (n == -1) n = size();
                auto enum_kth = [&](const poly& f, const poly& g, int k, int n) {
                    /*return f(y) = [x^k](g(x) / (1 - y* f(x))) = \sum_{i = 0}^{n - 1} [x^k] g(x) f^i(x) y^i*/
                    if (k < 0 or n <= 0) return poly();
                    poly P(k + 1), Q((k + 1) << 1);
                    copy_n(g.f.cbegin(), min(P.size(), g.size()), P.f.begin());
                    Q.f.front() = 1;
                    if (f.size()) for (int i = k + 1, j = 0; i < Q.size() and j < f.size();) Q[i ++] = (f[j] == 0 ? 0 : mod - f[j]), ++ j;

                    auto quad_nonres = [&](){ for(int i = 2; ; ++ i) if (qp(i, mod >> 1) == mod - 1) return i; };
                    auto sylow2_subgroup_gen = [&](){ return qp(quad_nonres(), mod >> __builtin_ctz(mod - 1)); };
                    auto get_root = [&](int n) {
                        vu32 root = {ginv(2)};
                        array<int, __builtin_ctz(mod - 1) - 1> irt;
                        irt.back() = qp(sylow2_subgroup_gen(), mod - 2);
                        for(int i = __builtin_ctz(mod - 1) - 3; i >= 0; -- i) irt[i] = 1ll * irt[i + 1] * irt[i + 1] % mod;
                        int s = (int)root.size();
                        if (s < n) {
                            root.resize(n);
                            for (int i = __builtin_ctz(s), j; (1 << i) < n; ++ i) {
                                root[j = (1 << i)] = irt[i];
                                for (int k = j + 1; k < (j << 1); ++ k)
                                    root[k] = 1ll * root[k - j] * root[j] % mod;
                                root[j] = 1ll * root[j] * root.front() % mod;
                            }
                        } return root;
                    };

                    for (int d = 1; k != 0; d <<= 1, k >>= 1) {
                        const int lg_len = lg((2 * d + 1) * (2 * k + 2) - 1) + 1, len = 1 << lg_len; 
                        poly P_(len), Q_(len), U(len / 2), V(len / 2);
                        for (int i = 0; i <  d; ++ i) copy_n(P.f.cbegin() + i * (k + 1), k + 1, P_.f.begin() + i * (2 * k + 2));
                        for (int i = 0; i <= d; ++ i) copy_n(Q.f.cbegin() + i * (k + 1), k + 1, Q_.f.begin() + i * (2 * k + 2)); 
                        ntt(P_.data(), lg_len); ntt(Q_.data(), lg_len);
                        if (k & 1) {
                            auto root = get_root(len >> 1);
                            for (int i = 0; i < len; i += 2) {
                                U[i / 2] = 1ll * (1ll * P_[i] * Q_[i + 1] % mod - 1ll * P_[i + 1] * Q_[i] % mod + mod) * root[i / 2] % mod;
                                V[i / 2] = 1ll * Q_[i] * Q_[i + 1] % mod;
                            }
                        } else {
                            auto root = get_root(1);
                            for (int i = 0; i < len; i += 2) {
                                U[i / 2] = 1ll * (1ll * P_[i] * Q_[i + 1] + 1ll * P_[i + 1] * Q_[i]) % mod * root[0] % mod;
                                V[i / 2] = 1ll * Q_[i] * Q_[i + 1] % mod;
                            }
                        } 
                        intt(U.data(), lg_len - 1), intt(V.data(), lg_len - 1);
                        P.f.assign((2 * d) * (k / 2 + 1), 0);
                        Q.f.assign((2 * d + 1) * (k / 2 + 1), 0);
                        for (int i = 0; i <  (d << 1); ++ i) copy_n(U.f.cbegin() + i * (k + 1), k / 2 + 1, P.f.begin() + i * (k / 2 + 1));
                        for (int i = 0; i <= (d << 1); ++ i) copy_n(V.f.cbegin() + i * (k + 1), k / 2 + 1, Q.f.begin() + i * (k / 2 + 1)); 
                    } P.resize(n), Q.resize(n);

                    return (P / Q).resize(n);
                };
                if (n <= 0 or f.size() < 2) return poly(0);
                if (n == 1) return poly(1);
                poly F = *this; F.resize(n);

                int f1_inv = qp(F[1], mod - 2), _c = f1_inv;
                for (int i = 1; i < n; ++ i) F[i] = 1ll * F[i] * _c % mod, _c = 1ll * _c * f1_inv % mod;
               
                auto a = enum_kth(F, (poly){1}, n - 1, n);

                for (int i = 1; i < n; ++ i) a[i] = 1ll * a[i] * (n - 1) % mod * ginv(i) % mod;
                poly a_(a.size());
                for (int i = 0; i < a.size(); ++ i)  a_[i] = a[a.degree() - i];
                a_ = a_.pow(mod - qp(n - 1, mod - 2));
                poly B(2); B[0] = 0, B[1] = f1_inv;
                return (a_ * B).resize(n);
            } 
            inline poly composite(const poly& g, int n = -1) const {
                if (n == -1) n = size();
                if (n <= 0) return poly();
                if (g.size() == 0) return poly(n + 1);

                poly Q(n * 2);
                int g0_ = g[0];
                Q[0] = 1; 
                for (int i = n, j = 0; j < g.size() and i < 2 * n;) Q[i ++] = (g[j] == 0 ? 0 : mod - g[j]), ++ j;

                function<poly(const poly&, int, int)> rec = [&](const poly& Q, int d, int n) {
                    if (n == 0) {
                        poly P(d), Qinv(d);
                        for(int i = d - 1, j = 0; j < f.size() && i >= 0; ) P[i --] = f[j ++];
                        for(int i = 0, e = 1; i < d; ++ i) Qinv[i] = 1ll * gC(d + i - 1, i) * e % mod, e = 1ll * e * g0_ % mod;
                        return (P * Qinv).resize(d);
                    }
                    const int lg_len = lg((2 * d + 1) * (2 * n + 2) - 1) + 1, len = 1 << lg_len;
                    poly Q_(len), VV(1 << (lg_len - 1));
                    for (int i = 0; i <= d; ++ i) copy_n(Q.f.begin() + i * (n + 1), n + 1, Q_.f.begin() + i * (n * 2 + 2));
                    ntt(Q_.data(), lg_len);
                    for (int i = 0; i < len; i += 2) VV[i / 2] = 1ll * Q_[i] * Q_[i + 1] % mod;
                    intt(VV.data(), lg_len - 1);
                    poly V((d * 2 + 1) * (n / 2 + 1));
                    for (int i = 0; i <= 2 * d; ++ i) copy_n(VV.f.begin() + i * (n + 1), n / 2 + 1, V.f.begin() + i * (n / 2 + 1));
                    const poly T = rec(V, 2 * d, n / 2);
                    poly T_(len / 2), UU(len);
                    for (int i = 0; i < 2 * d; ++ i) copy_n(T.f.begin() + i * (n / 2 + 1), n / 2 + 1, T_.f.begin() + i * (n + 1));
                    ntt(T_.data(), lg_len - 1);
                    for (int i = 0; i < len; i += 2) UU[i] = 1ll * T_[i / 2] * Q_[i + 1] % mod, UU[i + 1] = 1ll * T_[i / 2] * Q_[i] % mod;
                    intt(UU.data(), lg_len);
                    poly U(d * (n + 1));
                    for (int i = 0; i < d; ++ i) copy_n(UU.f.begin() + (i + d) * (n * 2 + 2), n + 1, U.f.begin() + i * (n + 1));

                    return U;
                };

                return rec(Q, 1, max(n - 1, size() - 1)).resize(n);
            }
        };
        inline poly operator""_p(const char *str, size_t len) {
            poly ans(2);
            int sgn = 1, phase = 0, coeff = 0, touch = 0, cnum = 0;
            auto clean = [&]() {if(sgn==-1)coeff=(coeff==0?coeff:mod-coeff);if(phase==-1)ans[1]+=coeff;else if(phase==0)ans[0]+=(int)cnum;else if(phase==1)ans.resize(max(cnum+1,ans.size())),ans[cnum]+=coeff;else assert(0);phase=cnum=touch=0; };
            for (int i = 0; i < (int)len; ++i) {
                if (str[i] == '+') clean(), sgn = 1;
                else if (str[i] == '-') clean(), sgn = -1;
                else if ('0' <= str[i] and str[i] <= '9') {
                    assert(phase == 0 || phase == 1);
                    if (phase == 0) touch = 1, cnum = (10ll * cnum + str[i] - 48) % mod;
                    else cnum = 10ll * cnum + str[i] - 48, assert(cnum < 1e8);
                } else if (str[i] == 'x') {
                    while (str[i + 1] == ' ') ++i;
                    assert(str[i + 1] == '^' || str[i + 1] == '+' || str[i + 1] == '-' || str[i + 1] == 0);
                    phase = -1;
                    coeff = touch ? cnum : 1;
                    cnum = 0;
                } else if (str[i] == '^') {
                    assert(phase == -1);
                    phase = 1;
                }
            } clean();
            return ans;
        }
        namespace __semiconvol__ {
            const int logbr = 4, br = 1 << logbr, maxdep = (maxbit - 1) / logbr + 1, __bf = 6, bf = max(__bf, logbr - 1), pbf = 1 << bf;
            inline void src(poly &f, const poly &g, const function<void(const int &, poly &, const poly &)> &relax) {
                int nsize = g.size(), mxb = lg(nsize - 1) + 1;
                f.resize(1 << mxb);
                vu32 __prentt[maxdep][br];
                for (int i = 0, k = mxb; k > bf; k -= logbr, i++) {
                    for (int j = 0; j < br - 1; j++) {
                        if ((j << (k - logbr)) >= nsize)
                            break;
                        __prentt[i][j].resize(2 << (k - logbr));
                        int nl = (j << (k - logbr)), nr = min(((j + 2) << (k - logbr)), nsize) - nl;
                        memcpy(__prentt[i][j].data(), g.data() + nl, nr * 4);
                        ntt(__prentt[i][j].data(), k - logbr + 1);
                    }
                }
                function<void(int, int, int)> __div = [&](int x, int l, int r) {if(r-l<=pbf){for(int i=l;i<r;i++){relax(i,f,g);if(i+1<r)for(int j=i+1;j<r;j++)f[j]=(f[j]+1ll*f[i]*g[j-i])%mod;}return;}int nbit=mxb-logbr*(x+1),nbr=0;vu32 __tmp[br];while(l+(nbr<<nbit)<r){__tmp[nbr].resize(2<<nbit);nbr++;}for(int i=0;i<nbr;i++){if(i!=0){intt(__tmp[i].data(),nbit+1);for(int j=0;j<(1<<nbit);j++){u32&x=f[l+(i<<nbit)+j],&y=__tmp[i][j+(1<<nbit)];x=x+y-(x+y>=mod)*mod,y=0;}}__div(x+1,l+(i<<nbit),min(l+((i+1)<<nbit),r));if(i!=nbr-1){memcpy(__tmp[i].data(),f.data()+l+(i<<nbit),4<<nbit);ntt(__tmp[i].data(),nbit+1);for(int j=i+1;j<nbr;j++)for(int k=0;k<(2<<nbit);k++)__tmp[j][k]=(__tmp[j][k]+1ll*__tmp[i][k]*__prentt[x][j-i-1][k])%mod;}} };
                __div(0, 0, nsize);
                f.resize(nsize);
            }
        }
        using __semiconvol__::src;
        inline poly poly::ln() const {
            poly ret;
            src(ret, *this, [&](const int &i, poly &f, const poly &g) {if(i==0)f[i]=0;else f[i]=(1ll*g[i]*i+mod-f[i])%mod; });
            for (int i = degree(); i >= 1; -- i) ret[i] = 1ll * ginv(i) * ret[i] % mod;
            return ret;
        }
        inline poly poly::exp() const {
            poly ret, tmp(*this);
            for (int i = 0; i < size(); ++ i) tmp[i] = 1ll * tmp[i] * i % mod;
            src(ret, tmp, [&](const int &i, poly &f, const poly &g) {if(i==0)f[i]=1;else f[i]=1ll*f[i]*ginv(i)%mod; });
            return ret;
        }
        inline poly poly::inv() const {
            poly ret, tmp(*this);
            int ivf0 = qp(f[0], mod - 2);
            tmp[0] = 0;
            src(ret, tmp, [&](const int &i, poly &f, const poly &g) {if(i==0)f[i]=ivf0;else f[i]=1ll*ivf0*(mod-f[i])%mod; });
            return ret;
        }
        inline poly poly::quo(const poly &g) const {
            using namespace __semiconvol__;
            int nsize = f.size(), mxb = lg(nsize - 1) + 1;
            vu32 res(1 << mxb), __prentt[maxdep][br], _f(g.f);
            u32 ivf0 = qp(_f[0], -1);
            _f[0] = 0, _f.resize(nsize);
            for (int i = 0, k = mxb; k > bf; k -= logbr, i++) {
                for (int j = 0; j < br - 1; j++) {
                    if ((j << (k - logbr)) >= nsize) break;
                    __prentt[i][j].resize(2 << (k - logbr));
                    int nl = (j << (k - logbr)), nr = min(((j + 2) << (k - logbr)), nsize) - nl;
                    memcpy(__prentt[i][j].data(), _f.data() + nl, nr * 4);
                    ntt(__prentt[i][j].data(), k - logbr + 1);
                }
            }
            function<void(int, int, int)> __div = [=, &res, &__prentt, &_f, &mxb, &__div, &ivf0](int x, int l, int r) {if(r-l<=pbf){for(int i=l;i<r;i++){res[i]=1ll*ivf0*(i==0?f[0]:f[i]+mod-res[i])%mod;if(i+1<r){u64 __tmp=res[i];for(int j=i+1;j<r;j++)res[j]=(res[j]+__tmp*_f[j-i])%mod;}}return;}int nbit=mxb-logbr*(x+1),nbr=0;vu32 __tmp[br];while(l+(nbr<<nbit)<r){__tmp[nbr].resize(2<<nbit);nbr++;}for(int i=0;i<nbr;i++){if(i!=0){intt(__tmp[i].data(),nbit+1);for(int j=0;j<(1<<nbit);j++){u32&x=res[l+(i<<nbit)+j],&y=__tmp[i][j+(1<<nbit)];x=x+y-(x+y>=mod)*mod,y=0;}}__div(x+1,l+(i<<nbit),min(l+((i+1)<<nbit),r));if(i!=nbr-1){memcpy(__tmp[i].data(),res.data()+l+(i<<nbit),4<<nbit);ntt(__tmp[i].data(),nbit+1);for(int j=i+1;j<nbr;j++)for(int k=0;k<(2<<nbit);k++)__tmp[j][k]=(__tmp[j][k]+1ll*__tmp[i][k]*__prentt[x][j-i-1][k])%mod;}} };
            __div(0, 0, nsize);
            return res.resize(nsize), res;
        }
        namespace __multipoint_operation__ {
            vector<poly> __Q;
            poly _E_Mul(poly A, poly B) {
                int n = A.size(), m = B.size();
                B.rev(), B = A * B;
                for (int i = 0; i < n; ++i) A[i] = B[i + m - 1];
                return A;
            }
            void _E_Init(int p, int l, int r, poly &a) {
                if (l == r) {
                    __Q[p].resize(2);
                    __Q[p][0] = 1, __Q[p][1] = (a[l] ? mod - a[l] : a[l]);
                    return;
                } int mid = l + r >> 1;
                _E_Init(p << 1, l, mid, a), _E_Init(p << 1 | 1, mid + 1, r, a);
                __Q[p] = __Q[p << 1] * __Q[p << 1 | 1];
            }
            void _E_Calc(int p, int l, int r, const poly &F, poly &g) {
                if (l == r) return void(g[l] = F[0]);
                poly __F(r - l + 1);
                for (int i = 0, ed = r - l + 1; i < ed; ++i) __F[i] = F[i];
                int mid = l + r >> 1;
                _E_Calc(p << 1, l, mid, _E_Mul(__F, __Q[p << 1 | 1]), g);
                _E_Calc(p << 1 | 1, mid + 1, r, _E_Mul(__F, __Q[p << 1]), g);
            }
            vector<poly> __P;
            void _I_Init(int p, int l, int r, const poly &x) {
                if (l == r) {
                    __P[p].resize(2), __P[p][0] = (x[l] ? mod - x[l] : 0), __P[p][1] = 1;
                    return;
                } int mid = l + r >> 1;
                _I_Init(p << 1, l, mid, x), _I_Init(p << 1 | 1, mid + 1, r, x);
                __P[p] = __P[p << 1] * __P[p << 1 | 1];
            }
            poly _I_Calc(int p, int l, int r, const poly &t) {
                if (l == r) return poly(1, t[l]);
                int mid = l + r >> 1;
                poly L(_I_Calc(p << 1, l, mid, t)), R(_I_Calc(p << 1 | 1, mid + 1, r, t));
                L = L * __P[p << 1 | 1], R = R * __P[p << 1];
                for (int i = 0; i < (int)R.size(); ++i) {
                    L[i] = L[i] + R[i];
                    if (L[i] >= mod) L[i] -= mod;
                } return L;
            }
        }
        inline poly poly::eval(int n, poly a) const {
            using namespace __multipoint_operation__;
            n = max(n, size());
            poly v(n), F(f);
            __Q.resize(n << 2);
            F.resize(n + 1), a.resize(n);
            _E_Init(1, 0, n - 1, a);
            __Q[1].resize(n + 1);
            _E_Calc(1, 0, n - 1, _E_Mul(F, __Q[1].inv()), v);
            return v;
        }
        inline poly poly::intp(int n, const poly &x, const poly &y) {
            using namespace __multipoint_operation__;
            __P.resize(n << 2);
            _I_Init(1, 0, n - 1, x);
            __P[1] = __P[1].deri();
            poly t = __P[1].eval(n, x);
            for (int i = 0; i < n; ++i) t[i] = 1ll * y[i] * qp(t[i], mod - 2) % mod;
            f = _I_Calc(1, 0, n - 1, t);
            return *this;
        }
    } using namespace polynomial;
} using namespace __POLY__;

标签:__,const,int,多项式,poly,板子,mm,mod
From: https://www.cnblogs.com/joke3579/p/18173187/polynomial

相关文章

  • 多项式计数
    注:其实前面还有一些内容,如矩阵树定理一类的东西。但是由于我还没有整理好所以把整理好的部分弄上来。一些DFT/IDFT的算法学多项式是一个很有意思的过程。开始的时候你会学习FFT/NTT知道怎么样通过DFT/IDFT快速计算多项式的各种操作。然后你会深入学习多项式的各种运......
  • 多项式全家桶
    还有好一些困难东西没学,现就这样吧。每日一遍:\(167772161,469762049\)除了求逆其他都要预留两倍空间!#include<bits/stdc++.h>usingnamespacestd;typedeflonglongll;typedefunsignedlonglongull;constllN=(1<<19)+3,H=998244353,g=3,ig=(H+1)/3;intU[N];ull......
  • 多项式模板学习笔记
    多项式乘法存在多项式\(F(z)=\sum_{i=0}^na_iz^i,G(z)=\sum_{i=0}^mb_iz^i\),我们定义多项式乘法:\[F(z)*G(z)=\sum_i\sum_ja_ib_jz^{i+j}\]多项式的点值表达一个\(n\)次函数可以用平面上的\(n+1\)个点来表达。所以我们可以把一个\(n\)次多项式从系数表达转化成\(n+......
  • Censoring S(板子)
    题目描述原题来自:USACO2015Feb.Silver给出两个字符串和,每次从前往后找到的一个子串并将其删除,空缺位依次向前补齐,重复上述操作多次,直到串中不含串。输出最终的串。输入格式第一行包含一个字符串,第二行包含一个字符串。样例输入whatthemomooofun......
  • 多项式乘法(FFT)学习笔记
    Reference:@自为风月马前卒亦@attack的博客这里为了帮助我自己理解,先手推(抄)一遍这位dalao给出的快速傅里叶逆变换的证明。\((y_0,y_1,\dots,y_{n-1})\)为多项式\((a_0,a_1,\dots,a_{n-1})\)在\(x\)取\((\omega^0_n,\omega^1_n,\dots,\omega^{n-1}_n)\)时......
  • 普通有限多项式笔记
    普通多项式笔记\(\textrm{Newton'sMethod}\)(牛顿迭代)应用于解决已知\(g(x)\)的情况下,求出\(g(f(x))\equiv0\modx^n\)。首先通过列出方程显然,\(f(x)\modx^n\)在此时是唯一的。那么我们假设已知\(g(f_0(x))\equiv0\modx^{n/2}\),显然此时\(f_0(x)\modx^{n/2}\)也......
  • 【计算几何】二维基础 (丑陋的)板子
    符号判断与大小比较intsgn(intx){ if(fabs(x)<eps)return0; elseif(x>=eps)return1; elsereturn-1;}//实数的向上取整函数int_ceil(constdouble&x){longlongk=ceil(x);while(k<x)k++;while(k>x+1)k--;returnk;}点structPoint......
  • 分块(板子)
    “优雅的暴力”——分块分块是一种暴力的优化,虽然效率比线段树、树状数组等数据结构低的多\((N+Q)\sqrt{N}\),但是更加灵活。分块的思想是把整个区间分成几个部分,对于要处理的区间包括两个部分“整块”,和区间边缘的“零散块”,“零散块”直接暴力,“整块”进行整体操作即可。......
  • 板子速查
    基础二分答案intfind1(intx){intl=1,r=n;while(l<r){intmid=(l+r)>>1;if(check(mid))l=mid+1;elser=mid;}returnl;}//l:第一个不满足check()性质的数。intfind2(intx){intl=1,r......
  • P7431【THUPC2017】小 L 的计算题 (牛顿恒等式)(分治NTT)(多项式求逆)题解
    知识点涉及:牛顿恒等式,分治\(NTT\),多项式求逆。这道题有一个推式子之后分治\(NTT+Ln+Exp\)的做法,不过也有一个不用\(Ln+Exp\)的做法(理论常数要小点,实际差不多)。题解:这道题可以牛顿恒等式直接推出一个非常好写的东西。首先看一下牛顿恒等式的描述:对于\(n\)次多项式\(A(......