首页 > 其他分享 >Pytorch DistributedDataParallel(DDP)教程一:快速入门理论篇

Pytorch DistributedDataParallel(DDP)教程一:快速入门理论篇

时间:2024-04-15 09:56:11浏览次数:19  
标签:DistributedDataParallel 每个 训练 DDP Pytorch 进程 GPU 数据

一、 写在前面

随着深度学习技术的不断发展,模型的训练成本也越来越高。训练一个高效的通用模型,需要大量的训练数据和算力。在很多非大模型相关的常规任务上,往往也需要使用多卡来进行并行训练。在多卡训练中,最为常用的就是分布式数据并行(DistributedDataParallel, DDP)。但是现有的有关DDP的教程和博客比较少,内容也比较分散繁琐。在大多数情况下,我们只需要学会如何使用即可,不需要特别深入地了解原理。为此,写下这个系列博客,简明扼要地介绍一下DDP的使用,抛开繁杂的细节和原理,帮助快速上手使用(All in one blog)。

篇幅较长,分为上下两篇:这篇简要介绍相关背景和理论知识,下篇详细介绍代码框架和搭建流程。

二、什么是分布式并行训练
1. 并行训练

在Pytorch中,有两种并行训练方式:

1)模型并行。模型并行通常是指你的模型非常大,大到一块卡根本放不下,因而需要把模型进行拆分放到不同的卡上。

2)数据并行。数据并行通常用于训练数据非常庞大的时候,比如有几百万张图像用于训练模型。此时,如果只用一张卡来进行训练,那么训练时间就会非常的长。并且由于单卡显存的限制,训练时的batch size不能设置得过大。但是,对于很多模型的性能而言,由于BN层的使用,都会和batch size的大小正相关。此外,很多基于对比学习的训练算法,由于其对负样本的需求,性能也与batch size的大小正相关。因此,我们需要使用多卡训练,不仅可以训练加速,并且可以设置更大的batch size来提升性能。

2. 数据并行

在Pytorch中有两种方式来实现数据并行:

1)数据并行(DataParallel,DP)。DataParallel采用参数服务器架构,其训练过程是单进程的。在训练时,会将一块GPU作为server,其余的GPU作为worker,在每个GPU上都会保留一个模型的副本用于计算。训练时,首先将数据拆分到不同的GPU上,然后在每个worker上分别进行计算,最终将梯度汇总到server上,在server进行模型参数更新,然后将更新后的模型同步到其他GPU上。这种方式有一个很明显的弊端,作为server的GPU其通信开销和计算成本非常大。它需要和其他所有的GPU进行通信,并且梯度汇总、参数更新等步骤都是由它完成,导致效率比较低。并且,随着多卡训练的GPU数量增强,其通信开销也会线性增长。

Parameter Server架构

不过DataParallel的代码十分简洁,仅需在原有单卡训练的代码中加上一行即可。

model = nn.DataParallel(model) 

如果你的数据集并不大,只有几千的规模,并且你多卡训练时的卡也不多,只有4块左右,那么DataParallel会是一个不错的选择。

关于Parameter Server更详细的原理介绍,可以参考:

深度学习加速:算法、编译器、体系结构与硬件设计

一文讀懂「Parameter Server」的分布式機器學習訓練原理

2)分布式数据并行(DistributedDataParallel,DDP)。DDP采用Ring-All-Reduce架构,其训练过程是多进程的。如果要用DDP来进行训练,我们通常需要修改三个地方的代码:数据读取器dataloader,日志输出print,指标评估evaluate。其代码实现略微复杂,不过我们只需要始终牢记一点即可:每一块GPU都对应一个线程,除非我们手动实现相应代码,不然各个线程的数据都是不互通的。Pytorch只为我们实现了同步梯度和参数更新的代码,其余的需要我们自己实现。

Ring-All-Reduce架构

三、DDP的基本原理
1. DDP的训练过程

DDP的训练过程可以总结为如下步骤:

1)在训练开始时,整个数据集被均等分配到每个GPU上。每个GPU独立地对其分配到的数据进行前向传播(计算预测输出)和反向传播(计算梯度)。

2)同步各个GPU上的梯度,以确保模型更新的一致性,该过程通过Ring-All-Reduce算法实现。

3)一旦所有的GPU上的梯度都同步完成,每个GPU就会使用这些聚合后的梯度来更新其维护的模型副本的参数。因为每个GPU都使用相同的更新梯度,所以所有的模型副本在任何时间点上都是相同的。

2. Ring-All-Reduce算法

Ring-All-Reduce架构是一个环形架构,所有GPU的位置都是对等的。每个GPU上都会维持一个模型的副本,并且只需要和它相连接的两个GPU通信。

对于第k个GPU而言,只需要接收来自于第k-1个GPU的数据,并将数据汇总后发送给第k+1个GPU。这个过程在环中持续进行,每个GPU轮流接收、聚合并发送梯度。

经过 N 次的迭代循环后(N是GPU的数量),每个GPU将累积得到所有其他GPU的梯度数据的总和。此时,每个GPU上的梯度数据都是完全同步的。

DDP的通信开销与GPU的数量无关,因而比DP更为高效。如果你的训练数据达到了十万这个量级,并且需要使用4卡及以上的设备来进行训练,DDP将会是你的最佳选择。

关于DDP和Ring-All-Reduce算法的更多实现原理和细节,可以参考:

Bringing HPC Techniques to Deep Learning

Pytorch 分散式訓練 DistributedDataParallel — 概念篇

Technologies behind Distributed Deep Learning: AllReduce

四、如何搭建一个Pytorch DDP代码框架
1. 与DDP有关的基本概念

在开始使用DDP之前,我们需要了解一些与DDP相关的概念。

参数 含义 查看方式
group 分布式训练的进程组,每个group可以进行自己的通信和梯度同步 Group通常在初始化分布式环境时创建,并通过torch.distributed.new_group等API创建自定义groups。
world size 参与当前分布式训练任务的总进程数。在单机多GPU的情况下,world size通常等于GPU的数量;在多机情况下,它是所有机器上所有GPU的总和。 torch.distributed.get_world_size()
rank Rank是指在所有参与分布式训练的进程中每个进程的唯一标识符。Rank通常从0开始编号,到world size - 1结束。 torch.distributed.get_rank()
local rank Local rank是当前进程在其所在节点内的相对编号。例如,在一个有4个GPU的单机中,每个GPU进程的local rank将是0, 1, 2, 3。这个参数常用于确定每个进程应当使用哪个GPU。 Local rank不由PyTorch的分布式API直接提供,而通常是在启动分布式训练时由用户设定的环境变量,或者通过训练脚本的参数传入。
2. 与DDP有关的一些操作

在DDP中,每个进程的数据是互不影响的(除了采用Ring-All-Reduce同步梯度)。如果我们要汇总或者同步不同进程上的数据,就需要用到一些对应的函数。

1)all_reduce

all_reduce操作会在所有进程中聚合每个进程的数据(如张量),并将结果返回给所有进程。聚合可以是求和、取平均、找最大值等。当你需要获得所有进程的梯度总和或平均值时,可以使用all_reduce。这在计算全局平均或总和时非常有用,比如全局平均损失。

一个示例代码如下:

import torch.distributed as dist

tensor_a = torch.tensor([1.0], device=device)
# 所有进程中的tensor_a将会被求和,并且结果会被分配给每个进程中的tensor_a。
dist.all_reduce(tensor_a, op=dist.ReduceOp.SUM)

2)all_gather

all_gather操作用于在每个进程中收集所有进程的数据。它不像all_reduce那样聚合数据,而是将每个进程的数据保留并汇总成一个列表。当每个进程计算出一个局部结果,并且你需要在每个进程中收集所有结果进行分析或进一步处理时,可以使用all_gather

一个示例代码如下:

import torch
import torch.distributed as dist

# 每个进程有一个tensor_a,其值为当前进程的rank
tensor_a = torch.tensor([rank], device=device)  # 假设rank是当前进程的编号
gather_list = [torch.zeros_like(tensor_a) for _ in range(dist.get_world_size())]
# 收集所有进程的tensor_a到每个进程的gather_list
dist.all_gather(gather_list, tensor)

3)broadcast

broadcast操作将一个进程的数据(如张量)发送到所有其他进程中。这通常用于当一个进程生成了某些数据,需要确保其他所有进程都得到相同的数据时。在在开始训练之前,可以用于同步模型的初始权重或者在所有进程中共享某些全局设置。一个示例代码如下:

import torch.distributed as dist

tensor_a = torch.tensor([1.0], device=device)
if rank == 0:
    tensor_a.fill_(10.0)  # 只有rank 0设置tensor_a为10
dist.broadcast(tensor_a, src=0)  # rank 0将tensor_a广播到所有其他进程
3. 要实现DDP训练,我们需要解决哪些问题?

1)如何将数据均等拆分到每个GPU

在分布式训练中,为了确保每个GPU都能高效地工作,需要将训练数据均等地分配到每个GPU上。如果数据分配不均,可能导致某些GPU数据多、某些GPU数据少,从而影响整体的训练效率。

在PyTorch中,可以使用torch.utils.data.DataLoader结合torch.utils.data.distributed.DistributedSamplerDistributedSampler会自动根据数据集、进程总数(world size)和当前进程编号(rank)来分配数据,确保每个进程获取到的数据互不重复且均衡分布。

2)如何在IO操作时避免重复

在使用PyTorch的分布式数据并行(DDP)进行模型训练时,由于每个进程都是独立运行的,IO操作如打印(print)、保存(save)或加载(load)等如果未经特别处理,将会在每个GPU进程上执行。这样的行为通常会导致以下问题:重复打印(每个进程都会输出同样的打印信息到控制台,导致输出信息重复,难以阅读)、文件写入冲突(如果多个进程尝试同时写入同一个文件,会产生写入冲突,导致数据损坏或者输出不正确)、资源浪费(每个进程重复加载相同的数据文件会增加IO负担,降低效率和浪费资源)。

一个简单且可行的解决方案是只在特定进程中进行相关操作,例如,只在rank为0的进程中执行,如有必要,再同步到其他进程。

3)如何收集每个进程上的数据进行评估

在DDP训练中,每个GPU进程独立计算其数据的评估结果(如准确率、损失等),在评估时,可能需要收集和整合这些结果。

通过torch.distributed.all_gather函数,可以将所有进程的评估结果聚集到每个进程中。这样每个进程都可以获取到完整的评估数据,进而计算全局的指标。如果只需要全局的汇总数据(如总损失或平均准确率),可以使用torch.distributed.reduceall_reduce操作直接计算汇总结果,这样更加高效。

4. 一个最简单的DDP代码框架

篇幅太长,见下篇。

五、查资料过程中的一个小惊喜

在查找DDP有关过程中,发现了一些博客和视频做得很不错,而且这里面有一部分是女生做的。博客和视频的质量都很高,内容安排合理,逻辑表达清晰,参考资料也很全面。我看到的时候,还是很惊艳的,巾帼不让须眉!链接如下:

国立中央大学的李馨伊

复旦大学的_Meilinger_

标签:DistributedDataParallel,每个,训练,DDP,Pytorch,进程,GPU,数据
From: https://www.cnblogs.com/liyier/p/18135209

相关文章

  • Conditional AutoEncoder的Pytorch完全实现
    一个完整的深度学习流程,必须包含的部分有:参数配置、Dataset和DataLoader构建、模型与optimizer与Loss函数创建、训练、验证、保存模型,以及读取模型、测试集验证等,对于生成模型来说,还应该有重构测试、生成测试。AutoEncoder进能够重构见过的数据、VAE可以通过采样生成新数据,对于MN......
  • 基于PyTorch框架的多层全连接神经网络实现MNIST手写数字分类
    基于PyTorch框架的多层全连接神经网络实现MNIST手写数字分类简单的三层全连接神经网络导入了PyTorch相关的库,定义了一个名为SimpleNet的类,继承自nn.Module,这个神经网络有三个全连接层,分别是layer1、layer2和layer3。在初始化函数__init__中,指定了输入维度in_dim、两个隐藏层的神......
  • 第二章 Pytorch基础
    2.1Pytorch张量学习心得:标量是0维张量向量可以表示一维张量(轴0)形状(4,)二维矩阵表示二维张量(上到下轴0,左到右轴1)形状(4,3)三维维矩阵表示三维张量(上到下轴0,左到右轴1,外到内轴2)形状(4,3,2)初始化张量importtorchx=torch.tensor([[1,2]])y=torch.tensor([[1],[2]])print(......
  • Deep Deterministic Policy Gradient(DDPG)算法讲解笔记
    DDPGDeepDeterministicPolicyGradient,基于actor-critic模型提出了一个有效的valuebased连续型空间的RL算法,引入了一些帮助训练稳定的技术。基础:DQN,Batchnormm,Discretize,微积分backgroundDQN改进的推广Policybased方法(TRPO)已经在actionspace取得突破传统disc......
  • (o゚v゚)ノ 清华镜像地址 (o゚v゚) ノ查看pytorch版本 (o゚v゚)ノ查看cuda版本的命令。。。
    清华镜像地址pipinstallxxx-ihttps://pypi.tuna.tsinghua.edu.cn/simple安装pytorch#CUDA11.8condainstallpytorch==2.1.2torchvision==0.16.2torchaudio==2.1.2pytorch-cuda=11.8-cpytorch-cnvidia安装DGL#Ifyouhaveinstalleddgl-cudaXX.Xpack......
  • 2024.4.11 Pytorch上手2 //
    Pytorch上手2ToTensor()是一个转换操作,它将PIL图片或者NumPyndarray转换成FloatTensor,并且把每一个数值归一化到[0,1]区间(原先的数值区间为[0,255])。这一步是为了方便后续的数值处理和模型训练。Pillow库介绍:Pillow是Python中一个流行的图像处理库,它是著名的PIL(Pyt......
  • WSL2-Ubuntu Pytorch深度学习开发环境搭建
    安装Linux发行版删除现有Linux发行版wsl-l-vwsl--unregisterUbuntu从MicrosoftStore安装Linux发行版设置用户名和密码安装CUDACUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和编程模型。CUDAToolkit是由NVIDIA提供的一套用于GPU开发......
  • 基于Anaconda安装Pytorch
    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、安装Anaconda二、安装过程中遇见的问题1.文章3.4.2安装失败总结前言Anaconda安装Pytorch具体流程与心得。一、安装Anaconda示例:pandas是基于NumPy的一种工具,该工具是为了解决数......
  • 机器学习常见的sampling策略 附PyTorch实现
    简单的采样策略首先介绍三种简单采样策略:Instance-balancedsampling,实例平衡采样。Class-balancedsampling,类平衡采样。Square-rootsampling,平方根采样。它们可抽象为:\[p_j=\frac{n_j^q}{\sum_{i=1}^Cn_i^q},\]\(p_j\)表示从j类采样数据的概率;\(C\)表示类别数量......
  • pytorch——DataLoader
    DataLoader1.主要参数dataset(Dataset)–要从中加载数据的数据集。batch_size(int,可选)–每批要加载的样品数:随即抓取(默认值:)。1shuffle(bool,可选)–设置是否重新洗牌数据在每个纪元(默认值:False)。num_workers(int,可选)–用于数据的子进程数装载。默认表示数据将......