首页 > 其他分享 >卷积神经网络——残差网络(ResNet)

卷积神经网络——残差网络(ResNet)

时间:2024-04-11 23:23:24浏览次数:35  
标签:卷积 梯度 残差 网络 ResNet 神经网络

原文链接:https://blog.csdn.net/weixin_52963585/article/details/124903050

在实际的试验中发现,随着卷积层和池化层的叠加,不但没有出现学习效果越来越好的情况,反而两种问题:

梯度消失和梯度爆炸
梯度消失:若每一层的误差梯度小于1,反向传播时,网络越深,梯度越趋近于0
梯度爆炸:若每一层的误差梯度大于1,反向传播时,网络越深,梯度越来越大

退化问题
随着层数的增加,预测效果反而越来越差。
为了解决梯度消失或梯度爆炸问题,ResNet论文提出通过数据的预处理以及在网络中使用 BN层来解决。 为了解决深层网络中的退化问题,可以人为地让神经网络某些层跳过下一层神经元的连接,隔层相连,弱化每层之间的强联系。这种神经网络被称为 残差网络 。

在残差块中,输入可通过跨层数据线路更快地向前传播

小结
学习嵌套函数(nested function)是训练神经网络的理想情况。在深层神经网络中,学习另一层作为恒等映射(identity function)较容易(尽管这是一个极端情况)。
残差映射可以更容易地学习同一函数,例如将权重层中的参数近似为零。
利用残差块可以训练出一个有效的深层神经网络:输入可以通过层间的残余连接更快地向前传播。

 

标签:卷积,梯度,残差,网络,ResNet,神经网络
From: https://www.cnblogs.com/Dongmy/p/18130230

相关文章

  • 深度可分离卷积
    https://blog.csdn.net/zml194849/article/details/117021815一些轻量级的网络,如mobilenet中,会有深度可分离卷积depthwiseseparableconvolution,由depthwise(DW)和pointwise(PW)两个部分结合起来,用来提取特征featuremap。相比常规的卷积操作,其参数数量和运算成本比较低。深度......
  • 卷积神经网络中的 “全连接层”
    原文链接:https://blog.csdn.net/nanhuaibeian/article/details/100532038、https://cloud.tencent.com/developer/article/2299601改进:https://www.bilibili.com/read/cv28976895/    CNN中的逐点卷积:替换全连接层它利用转置卷积层来替换CNN最后的全连接层,从而可以实现......
  • 卷积神经网络-激活函数
    原文链接:https://zhuanlan.zhihu.com/p/508741909?utm_id=0、https://zhuanlan.zhihu.com/p/476373735?utm_id=0、https://blog.csdn.net/purple_love/article/details/134620930https://www.zhihu.com/question/60650016/answer/2441796198?utm_id=0卷积神经网络中的卷积和池化......
  • 卷积神经网络中池化层的详细介绍
    原文链接:https://blog.csdn.net/a486259/article/details/131311587https://zhuanlan.zhihu.com/p/476242144池化层的本质是一个下采样,因为数据经过卷积之后维度越来越高,而且特征图没有多大改变,在连续多个卷积之后,会产生一个很大的参数量,不仅会大大的增加网络训练的难度,还容易造......
  • 数据是一维数据,利用tensorflow深度学习框架,写一个带自注意力机制的卷积神经网络,并进行
    下面是一个使用TensorFlow框架的带有自注意力机制的卷积神经网络(Self-AttentionConvolutionalNeuralNetwork)的示例代码,包括数据处理、模型定义和训练过程:importtensorflowastffromtensorflow.keras.layersimportConv1D,Dense,GlobalMaxPooling1D,Concatenate#......
  • 1*1卷积核的作用
    1*1卷积核是卷积神经网络中的一种特殊类型的卷积核。它可以用于以下几个方面:降维:通过使用1*1卷积核,可以将输入特征图的通道数进行降维。这对于减少模型参数和计算量非常有用,特别是在深层网络中。通过降维,可以减少后续层的计算负担。增加非线性:1*1卷积核可以引入非线性变......
  • 高创新,预测方向小论文有救了!霜冰优化算法+卷积神经网络+注意力机制+LSTM(附matlab代码
    专题推荐:论文推荐,代码分享,视角(点击即可跳转)所有链接建议使用电脑端打开,手机端打开较慢【代码推荐购买指南】电力系统运行优化与规划、时间序列预测、回归分类预测matlab代码公众号历史推文合集23.3.21(电力系统前沿视角/预测和优化方向matlab代码/电力系统优秀论文推荐......
  • Pointnet++改进即插即用系列:全网首发iRMB反向残差移动块 |即插即用,提升特征提取模块性
    简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入iRMB,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一     2.2步骤二     2.3步骤三......
  • 2023 NIPS A*Net: A Scalable Path-based Reasoning Approachfor Knowledge Graphs 知
    文章链接原文:b9e98316cb72fee82cc1160da5810abc-Paper-Conference.pdf(neurips.cc)代码:https://github.com/DeepGraphLearning/AStarNet一、动机与贡献为了使路径推理方法适用于大规模图上的归纳推理任务,文章改进了路径信息获取的方法。路径推理方法较好的归纳推理能力......
  • 2024.4.9 avx加速一维卷积操作(汇总)
    第三次作业提交内容一:源代码在-O3编译优化下执行结果:AVX指令集优化://conv_avx.cppboolConvolve1D_Ks5_F64_AVX(double*__restrict__y,constdouble*__restrict__x,constdouble*__restrict__kernel,int64_tnum_pts){constexprint64_tkernel_size=5......