归一化层是深度神经网络体系结构中的关键,在训练过程中确保各层的输入分布一致,这对于高效和稳定的学习至关重要。归一化技术的选择(Batch, Layer, GroupNormalization)会显著影响训练动态和最终的模型性能。每种技术的相对优势并不总是明确的,随着网络体系结构、批处理大小和特定任务的不同而变化。
本文将使用合成数据集对三种归一化技术进行比较,并在每种配置下分别训练模型。记录训练损失,并比较模型的性能。
神经网络中的归一化层是用于标准化网络中某一层的输入的技术。这有助于加速训练过程并获得更好的表现。有几种类型的规范化层,其中 Batch Normalization, Layer Normalization, Group Normalization是最常见的。
https://avoid.overfit.cn/post/e8ec905659e5446e84fb9617feb86e95
标签:Layer,Group,Batch,Norm,归一化,Normalization From: https://www.cnblogs.com/deephub/p/18118474