首页 > 其他分享 >Deepstream6.3部署YOLOv8

Deepstream6.3部署YOLOv8

时间:2024-04-06 16:44:06浏览次数:29  
标签:engine UID 部署 Yolo YOLOv8 nvinfer master cpp Deepstream6.3

https://blog.csdn.net/weixin_51230935/article/details/133296929?spm=1001.2101.3001.6650.5&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-5-133296929-blog-135528185.235%5Ev43%5Epc_blog_bottom_relevance_base7&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-5-133296929-blog-135528185.235%5Ev43%5Epc_blog_bottom_relevance_base7&utm_relevant_index=10

 

前提:

本人使用A机连向日葵到跳转机B机上,再在跳转机中使用Xshell连接控制服务器

我这里已经装好yolov8的环境,也有我训练好的模型
 一、配置Deepstream环境(dGPU)

通篇参考Quickstart Guide — DeepStream 6.3 Release documentation(如果你选择其他DS,可以去找其他教程)

dGPU 型号 平台和操作系统兼容性,先查看自己的显卡型号选择DS版本,再升级安装对应软件

参考:http://t.csdn.cn/Y1j86,安装顺序:ubuntu->driver->cuda->tensorrt->deepstream
1.查看显卡型号与信息

输入命令查看

nvidia-smi

 显示我有两个GPU显卡,型号都为nvidia A30,Driver version是显卡驱动版本,对应上表格中的Display driver,CUDA Version对应的是CUDA release

 总结:我的显卡型号A30可以安装的是DS6.1-6.3,我选择安装DS6.3

2.查看安装包型号(在当前环境下输入conda list都能找到)

下面的内容是我用来记录的,直接跳到3.安装依赖项
(1)ubuntu

输入命令:cat /etc/lsb-release

Ubuntu型号为20.04,符合DS6.1.1的要求

(2)GStreamer

输入命令查看型号:gst-inspect-1.0 --version,高于要求的1.16.2,怎么办?(需要严格要求)

输入命令查找安装位置:whereis gst-launch-1.0

(3)GCC版本

输入命令gcc --version,显示为9.4.0,符合

(3)cuda 的版本

输入nvcc -V

显示未安装,说明系统中没有安装cuda,

输入:conda list,显示当前虚拟环境下的安装包,查找,剩下的软件版本都能在这找到

或者输入

    python
    import torch
    print(torch.cuda.is_available())   # cuda是否可用
    print(torch.version.cuda)  # cuda版本
    print(torch.backends.cudnn.version()) #cudnn版本

cuda版本为11.7,cuda cudnn版本为8500

DS6.1.1要求cuda版本为11.7.1 ,cuda cudnn版本为cuDNN 8.4.1.50
3.安装依赖项

 cd转到你需要的环境的安装目录下

例如:我的yolov8的anaconda3的环境目录:/home/yyt/anaconda3/envs/yolov8

在下面执行指令安装软件包

    输入安装命令:例如:sudo apt install libssl1.1
    需要安装的软件包:
    libssl1.1
    libgstreamer1.0-0
    gstreamer1.0-tools
    gstreamer1.0-plugins-good
    gstreamer1.0-plugins-bad
    gstreamer1.0-plugins-ugly
    gstreamer1.0-libav
    libgstreamer-plugins-base1.0-dev
    libgstrtspserver-1.0-0
    libjansson4
    libyaml-cpp-dev
    gcc
    make
    git
    python3

我之前装过了,所以安装的时候显示

顺便修改了一下环境路径(不用做)

    vim ~/.bashrc
    添加路径:export PATH="/home/yyt/anaconda3/envs/yolov8/bin:$PATH"
    source ~/.bashrc

4.安装软件

我做到这一步的时候上司阻止了我,他怕我弄坏服务器,所以接下来安装软件这部分都是他弄的

一般参考Quickstart Guide — DeepStream 6.3 Release documentation

还有这位大佬的教程:

deepstream6.1-YOLOv5部署_deepstream yolov5_爱吃油淋鸡的莫何的博客-CSDN博客

完成安装后,输入命令:

deepstream-app --version-all

显示如下

即配置成功

将deepstream-6.3-lib添加到系统lib路径中,第二行是添加的路径

    sudo vi /etc/ld.so.conf
    (在文本后面添加该路径)/opt/nvidia/deepstream/deepstream-6.3/lib/  
    保存文件
    sudo ldconfig

显示如下

到这一切顺利。
二、安装和使用DeepStream
1.下载项目文件

先下载你的DeepStream-Yolo-master项目文件,链接:https://github.com/marcoslucianops/DeepStream-Yolo

我的下载路径是在/home/yyt/Deep-Yolo-master下面(这个项目路径不用太讲究)
2.生成.oxnn文件

复制yolov8项目中已经训练好的best.pt模型,可以重命名,我的模型命名为yolov8m_best.pt

将模型复制到yolov8项目的根目录下面,这种才是根目录

打开/Deep-Yolo-master/utils,下面有一个export_yoloV8.py文件,也把他复制到yolov8根目录下

可用输入命令来复制,更改路径即可

cp (你的deepstream路径)/DeepStream-Yolo/utils/export_yoloV8.py (yolov8根目录)/ultralytics/

输入cd命令转到yolov8根目录下,输入命令

python3 export_yoloV8.py -w yolov8s.pt --simplify

生成labels.txt和 xxx.oxnn文件
3.编译

cd命令进入..../Deep-Yolo-master/ 目录下面,运行代码,记得修改你的cuda版本

    CUDA_VER=12.1 make -C nvdsinfer_custom_impl_Yolo
    #根据cuda版本来修改12.1

 编译成功后会出现文件nvdsinfer_custom_impl_Yolo,下面有这个文件:libnvdsinfer_custom_impl_Yolo.so
4.修改配置文件

修改/Deep-Yolo-master/config_infer_primary_yoloV8.txt文件,打开文件,修改的几个部分如下:

    onnx-file=/模型路径/yolov8m_best.oxnn
    model-engine-file=yolov8m_best.onnx_b1_gpu0_fp32.engine
    num-detected-classes=9(你的类别数)
    labelfile-path=/文件路径/labels.txt(之前生成在yolov8根目录下)
    custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so

修改/Deep-Yolo-master/deepstream_app_config_yoloV8.txt,修改项如下

config-file=config_infer_primary_yoloV8.txt

在cd ../Deep-Yolo-master后,输入命令

deepstream-app -c deepstream_app_config.txt

 在Deep-Yolo-master文件夹下生成一个后缀为.engine的文件,即成功

 报错
1.Config file path: /home/yyt/DeepStream-Yolo-master/config_infer_primary_yoloV8.txt, NvDsInfer Error: NVDSINFER_CONFIG_FAILED

    ** ERROR: <parse_config_file:642>: parse_config_file failed
    ** ERROR: <main:687>: Failed to parse config file 'deepstream_app_config_yolov8_drone.txt'
    Quitting
    App run failed
    (base) root@wsjdy-08:/home/yyt/DeepStream-Yolo-master# deepstream-app -c deepstream_app_config.txt
    WARNING: ../nvdsinfer/nvdsinfer_model_builder.cpp:1487 Deserialize engine failed because file path: /home/yyt/DeepStream-Yolo-master/yolov8m.onnx_b1_gpu0
    0:00:03.788108872 188438 0x5642611efe00 WARN                 nvinfer gstnvinfer.cpp:679:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from ngineAndBackend() <nvdsinfer_context_impl.cpp:1976> [UID = 1]: deserialize engine from file :/home/yyt/DeepStream-Yolo-master/yolov8m.onnx_b1_gpu0_fp32.e
    0:00:03.919250024 188438 0x5642611efe00 WARN                 nvinfer gstnvinfer.cpp:679:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from endContext() <nvdsinfer_context_impl.cpp:2081> [UID = 1]: deserialize backend context from engine from file :/home/yyt/DeepStream-Yolo-master/yolov8m.onnrebuild
    0:00:03.919329835 188438 0x5642611efe00 INFO                 nvinfer gstnvinfer.cpp:682:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDvdsinfer_context_impl.cpp:2002> [UID = 1]: Trying to create engine from model files
    WARNING: [TRT]: onnx2trt_utils.cpp:377: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to ca
    WARNING: [TRT]: onnx2trt_utils.cpp:403: One or more weights outside the range of INT32 was clamped
    WARNING: [TRT]: Tensor DataType is determined at build time for tensors not marked as input or output.
     
    Building the TensorRT Engine
     
    Building complete
     
    0:05:03.550611374 188438 0x5642611efe00 INFO                 nvinfer gstnvinfer.cpp:682:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDvdsinfer_context_impl.cpp:2034> [UID = 1]: serialize cuda engine to file: /home/yyt/DeepStream-Yolo-master/model_b16_gpu0_fp32.engine successfully
    WARNING: [TRT]: The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BAT return 1.
    INFO: ../nvdsinfer/nvdsinfer_model_builder.cpp:610 [Implicit Engine Info]: layers num: 4
    0   INPUT  kFLOAT input           3x640x640       
    1   OUTPUT kFLOAT boxes           8400x4          
    2   OUTPUT kFLOAT scores          8400x1          
    3   OUTPUT kFLOAT classes         8400x1          
     
    0:05:03.566493516 188438 0x5642611efe00 WARN                 nvinfer gstnvinfer.cpp:679:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from Params() <nvdsinfer_context_impl.cpp:1920> [UID = 1]: Backend has maxBatchSize 1 whereas 16 has been requested
    0:05:03.566505451 188438 0x5642611efe00 ERROR                nvinfer gstnvinfer.cpp:676:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsdsinfer_context_impl.cpp:2052> [UID = 1]: deserialized backend context :/home/yyt/DeepStream-Yolo-master/model_b16_gpu0_fp32.engine failed to match confi
    0:05:03.793129765 188438 0x5642611efe00 ERROR                nvinfer gstnvinfer.cpp:676:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsontext() <nvdsinfer_context_impl.cpp:2108> [UID = 1]: build backend context failed
    0:05:03.793162562 188438 0x5642611efe00 ERROR                nvinfer gstnvinfer.cpp:676:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsdsinfer_context_impl.cpp:1282> [UID = 1]: generate backend failed, check config file settings
    0:05:03.793290824 188438 0x5642611efe00 WARN                 nvinfer gstnvinfer.cpp:898:gst_nvinfer_start:<primary_gie> error: Failed to create NvDsInferContex
    0:05:03.793297155 188438 0x5642611efe00 WARN                 nvinfer gstnvinfer.cpp:898:gst_nvinfer_start:<primary_gie> error: Config file path: /home/yytfer_primary_yoloV8.txt, NvDsInfer Error: NVDSINFER_CONFIG_FAILED
    ** ERROR: <main:716>: Failed to set pipeline to PAUSED
    Quitting
    nvstreammux: Successfully handled EOS for source_id=0
    ERROR from primary_gie: Failed to create NvDsInferContext instance
    Debug info: gstnvinfer.cpp(898): gst_nvinfer_start (): /GstPipeline:pipeline/GstBin:primary_gie_bin/GstNvInfer:primary_gie:
    Config file path: /home/yyt/DeepStream-Yolo-master/config_infer_primary_yoloV8.txt, NvDsInfer Error: NVDSINFER_CONFIG_FAILED
    App run failed

解决:config_infer_primary_yoloV8.txt中的model-engine-file

yolov8m_best_b1_gpu0_fp32.engine没有改成yolov8m_best.onnx_b1_gpu0_fp32.engine,即要加上.onnx
2.** ERROR: <main:733>: Could not open X Display

完整运行后,出现这种错误

这个问题是因为类似Xshell的ssh软件无法打开运行图像软件,不影响.engine文件的生成。

按需求解决

解决:参考** (java:10104): WARNING **: Could not open X display (MobaXterm无法打开smartgit)

标签:engine,UID,部署,Yolo,YOLOv8,nvinfer,master,cpp,Deepstream6.3
From: https://www.cnblogs.com/ztguang/p/18117574

相关文章

  • Docker学习笔记(二):在Linux中部署Docker(Centos7下安装docker、环境配置,以及镜像简单使用
    一、前言记录时间[2024-4-6]前置文章:Docker学习笔记(一):入门篇,Docker概述、基本组成等,对Docker有一个初步的认识在上文中,笔者进行了Docker概述,介绍其历史、优势、作用,以及基本组成。通过此,相信大家对Docker有了一个初步的认识。接下来就进入Docker的安装、环境配置,和简......
  • VM虚拟机部署code-server服务+tailscale内网穿透,实现随处coding
    1.Linux下安装code-serverReleases·coder/code-server(github.com)https://github.com/coder/code-server/releases先去发布页面查看最新的code-server版本,下载命令示例:wgethttps://github.com/coder/code-server/releases/download/v4.22.1/code-server_4.22.1_amd64.d......
  • 阿里云购买ECS后 部署GO
     一installnginx检测APTsudoaptinstall-ycurlgnupg2ca-certificateslsb-release安装NGINX sudoaptinstallnginxsudoufwapplist查询http sudoufwallow'NginxHTTP'查询状态sudoufwstatus 二修改nginx.conf文件server{listen80;#监......
  • 基于深度学习的智能监考系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
    摘要:本文深入研究了基于YOLOv8/v7/v6/v5的智能监考系统,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实时......
  • 计算机毕业设计选题之基于SSM的在线音乐网站【源码+PPT+文档+包运行成功+部署讲解】
    ......
  • Docker 部署war
    要在Docker中部署一个WAR文件到Tomcat服务器,你可以遵循以下步骤。这个过程包括创建一个自定义的Docker镜像,该镜像基于官方的Tomcat镜像,并在此基础上添加你的WAR文件。然后,你可以运行这个自定义镜像来启动一个容器,其中运行着Tomcat服务器和你的Web应用。步骤1:准备你的WAR文件......
  • Stable Diffusion的本地部署教程
    以下是在Windows10电脑上的操作步骤:一、下载安装包从以下夸克网盘下载地址下载安装包到本地,地址如下:链接:https://pan.quark.cn/s/7c51556d27eb提取码:cFdx输入提取码之后,界面如下图:选中SD目录之后,点击“下载”按钮,将这个目录文件全部下载到本地硬盘二、安装StableDiff......
  • Stable Diffusion本地部署教程
    StableDiffusion本地部署的步骤一般包括准备环境、下载StableDiffusion模型和依赖库、配置运行参数等。下面是一个通用的教程,用以在计算机上本地部署StableDiffusion。准备环境1.确保硬件满足最低要求:  -一块NVIDIAGPU,至少4GB显存(推荐更高显存)  -足够的磁盘空......
  • es 部署
    1环境准备 1.1修改host主机名,加入hosts解析#hostnamectlset-hostnamees1#cat>>/etc/hosts<<EOF192.168.234.160es1EOF1.2关闭防火墙#systemctlstopfirewalld#systemctldisablefirewalld1.3禁用selinux#sed-ri's#(SELINUX=)enforcing#\1disable......
  • 部署python网站
    如何部署python的代码既然是运维,运维,部署,维护一个完整的产品、前端开发工程师(前端代码html,css,js)+后端工程师(编写和数据库交互的逻辑代码)前端、后端源码,打包,发给运维,部署到linux服务器上1.如果是web产品,需要运维,部署如nginx这样的web服务器,提供域名,端口,防火墙,等允许......