首页 > 其他分享 >grad_cam下的自定义模型获取热力图

grad_cam下的自定义模型获取热力图

时间:2024-04-02 20:44:40浏览次数:25  
标签:__ 自定义 self cam grad image def out

原文链接:https://blog.csdn.net/zxdd2018/article/details/125505352

1.(多张图片)

备注:gram_cam_1

import os
import numpy as np
import torch
import cv2
import matplotlib.pyplot as plt
import torchvision.models as models
from torchvision.transforms import Compose, Normalize, ToTensor
from cifar.resnet import ResNet32

class GradCAM():
    '''
    Grad-cam: Visual explanations from deep networks via gradient-based localization
    Selvaraju R R, Cogswell M, Das A, et al.
    https://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html
    '''

    def __init__(self, model, target_layers, input_size, use_cuda=True):
        super(GradCAM).__init__()
        self.use_cuda = use_cuda
        self.model = model
        self.target_layers = target_layers

        self.target_layers.register_forward_hook(self.forward_hook)
        self.target_layers.register_full_backward_hook(self.backward_hook)

        self.activations = []
        self.grads = []
        self.input_size = input_size

    def forward_hook(self, module, input, output):
        self.activations.append(output[0])

    def backward_hook(self, module, grad_input, grad_output):
        self.grads.append(grad_output[0].detach())

    def calculate_cam(self, model_input):
        if self.use_cuda:
            device = torch.device('cuda')
            self.model.to(device)
            model_input = model_input.to(device)
        self.model.eval()

        # forward
        output, _ = self.model(model_input, 0)  # 修改这里以匹配您模型的输出
        y_hat = output
        max_class = np.argmax(y_hat.cpu().data.numpy(), axis=1)

        # backward
        self.model.zero_grad()
        y_c = y_hat[0, max_class]
        y_c.backward()

        # get activations and gradients
        activations = self.activations[0].cpu().data.numpy().squeeze()
        grads = self.grads[0].cpu().data.numpy().squeeze()

        # calculate weights
        weights = np.mean(grads.reshape(grads.shape[0], -1), axis=1)
        weights = weights.reshape(-1, 1, 1)
        cam = (weights * activations).sum(axis=0)
        cam = np.maximum(cam, 0)
        cam = cam / cam.max()
        return cam

    @staticmethod
    def show_cam_on_image(image, cam, save_path=None):
        h, w = image.shape[:2]

        cam = cv2.resize(cam, (w, h))  # 调整热图的尺寸与图像相同
        cam = cam / cam.max()
        heatmap = cv2.applyColorMap((255 * cam).astype(np.uint8), cv2.COLORMAP_JET)
        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)

        image = image / image.max()
        heatmap = heatmap / heatmap.max()

        result = 0.4 * heatmap + 0.6 * image
        result = result / result.max()

        plt.figure()
        plt.imshow((result * 255).astype(np.uint8))
        plt.colorbar(shrink=0.8)
        plt.tight_layout()
        if save_path:
            plt.savefig(save_path)
        # plt.show()

    @staticmethod
    def preprocess_image(img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
        preprocessing = Compose([
            ToTensor(),
            Normalize(mean=mean, std=std)
        ])
        return preprocessing(img.copy()).unsqueeze(0)


if __name__ == '__main__':
    # 加载您的模型
    # 假设您的模型保存在名为custom_model.pth.tar的文件中
    checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint1/151_31.21.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径
    custom_model = ResNet32(num_classes=100)  # 假设你使用的是CIFAR-100数据集
    checkpoint = torch.load(checkpoint_path)
    custom_model.load_state_dict(checkpoint['state_dict'])

    folder_path = '/home/zy/pycharm/project/MetaSAug-main/test/fistcam/new_img/'
    image_folders = [f for f in os.listdir(folder_path) if os.path.isdir(os.path.join(folder_path, f))]
    for folder_name in image_folders:
        folder_image_files = [f for f in os.listdir(os.path.join(folder_path, folder_name)) if
                              f.endswith(('.png', '.jpg', '.JPEG'))]
        print(f"文件夹 {folder_name} 中的图片文件:")
        for image_file in folder_image_files:
            print(image_file)
            image_dir = '/home/zy/pycharm/project/MetaSAug-main/test/fistcam/new_img/'+folder_name+'/'+image_file
            image = cv2.imread(image_dir)
            # 将图像调整为相同的大小
            resized_image = cv2.resize(image, (375, 500))  # 修改为你希望的尺寸
            input_tensor = GradCAM.preprocess_image(resized_image)
            grad_cam = GradCAM(custom_model, custom_model.layer4[-1], (256, 256))  # 替换为您的目标层
            cam = grad_cam.calculate_cam(input_tensor)
            # 将热图调整为相同的大小
            resized_cam = cv2.resize(cam, (resized_image.shape[1], resized_image.shape[0]))

            save_path = '/home/zy/pycharm/project/MetaSAug-main/test/cam/cam_img/'+folder_name+'_'+image_file
            GradCAM.show_cam_on_image(image, cam, save_path)


2.(单个图片)

备注:gram_cam_2

import os
import numpy as np
import torch
import cv2
import matplotlib.pyplot as plt
import torchvision.models as models
from torchvision.transforms import Compose, Normalize, ToTensor
from cifar.resnet import ResNet32

class GradCAM():
    '''
    Grad-cam: Visual explanations from deep networks via gradient-based localization
    Selvaraju R R, Cogswell M, Das A, et al.
    https://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html
    '''

    def __init__(self, model, target_layers, input_size, use_cuda=True):
        super(GradCAM).__init__()
        self.use_cuda = use_cuda
        self.model = model
        self.target_layers = target_layers

        self.target_layers.register_forward_hook(self.forward_hook)
        self.target_layers.register_full_backward_hook(self.backward_hook)

        self.activations = []
        self.grads = []
        self.input_size = input_size

    def forward_hook(self, module, input, output):
        self.activations.append(output[0])

    def backward_hook(self, module, grad_input, grad_output):
        self.grads.append(grad_output[0].detach())

    def calculate_cam(self, model_input):
        if self.use_cuda:
            device = torch.device('cuda')
            self.model.to(device)
            model_input = model_input.to(device)
        self.model.eval()

        # forward
        output, _ = self.model(model_input, 0)  # 修改这里以匹配您模型的输出
        y_hat = output
        max_class = np.argmax(y_hat.cpu().data.numpy(), axis=1)

        # backward
        self.model.zero_grad()
        y_c = y_hat[0, max_class]
        y_c.backward()

        # get activations and gradients
        activations = self.activations[0].cpu().data.numpy().squeeze()
        grads = self.grads[0].cpu().data.numpy().squeeze()

        # calculate weights
        weights = np.mean(grads.reshape(grads.shape[0], -1), axis=1)
        weights = weights.reshape(-1, 1, 1)
        cam = (weights * activations).sum(axis=0)
        cam = np.maximum(cam, 0)
        cam = cam / cam.max()

        # Resize CAM to match the input size
        cam = cv2.resize(cam, (model_input.size(3), model_input.size(2)))

        return cam

    @staticmethod
    def show_cam_on_image(image, cam, save_path=None):
        h, w = image.shape[:2]

        cam = cv2.resize(cam, (w, h))  # 调整热图的大小与原图像相同
        cam = cam / cam.max()
        heatmap = cv2.applyColorMap((255 * cam).astype(np.uint8), cv2.COLORMAP_JET)
        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)

        image = cv2.resize(image, (w, h))  # 调整原始图像的大小与热图相同
        image = image / image.max()
        heatmap = heatmap / heatmap.max()

        result = 0.4 * heatmap + 0.6 * image
        result = result / result.max()

        plt.figure()
        plt.imshow((result * 255).astype(np.uint8))
        plt.colorbar(shrink=0.8)
        plt.tight_layout()
        if save_path:
            plt.savefig(save_path)
        plt.show()

    @staticmethod
    def preprocess_image(img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
        preprocessing = Compose([
            ToTensor(),
            Normalize(mean=mean, std=std)
        ])
        return preprocessing(img.copy()).unsqueeze(0)


if __name__ == '__main__':
    # 加载您的模型
    # 假设您的模型保存在名为custom_model.pth.tar的文件中

    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/1_1.21.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径
    checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/3_2.46.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/40_20.66.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/80_26.27.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/120_26.86.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/160_32.66.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径

    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint1/151_31.21.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径

    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/3_5.27.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/40_20.96.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/80_25.3.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/120_25.62.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/160_30.43.pth.tar'  # 模型的路径,你需要替换成你保存的模型的路径

    custom_model = ResNet32(num_classes=100)  # 假设你使用的是CIFAR-100数据集
    checkpoint = torch.load(checkpoint_path)
    custom_model.load_state_dict(checkpoint['state_dict'])

    image_dir = '/home/zy/Desktop/img2/n03792782_22692.JPEG'

    image = cv2.imread(image_dir)
    resized_image = cv2.resize(image, (256, 256))  # 修改为模型的输入尺寸
    input_tensor = GradCAM.preprocess_image(resized_image)
    grad_cam = GradCAM(custom_model, custom_model.layer4[-1], (256, 256))  # 替换为您的目标层
    cam = grad_cam.calculate_cam(input_tensor)
    save_path = '/home/zy/Desktop/img2/n03792782_22692_eda_1.jpg'
    GradCAM.show_cam_on_image(image, cam, save_path)

3.附件(ResNet32)

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.autograd import Variable
import torch.nn.init as init
import warnings
import matplotlib.pyplot as plt

warnings.filterwarnings('ignore')


# 定义了一个基类MetaModule,它是所有其他模块的父类。
# MetaModule提供了一些用于处理参数和更新参数的方法。
class MetaModule(nn.Module):
    # adopted from: Adrien Ecoffet https://github.com/AdrienLE
    def params(self):
        for name, param in self.named_params(self):
            yield param

    def named_leaves(self):
        return []

    def named_submodules(self):
        return []

    def named_params(self, curr_module=None, memo=None, prefix=''):
        if memo is None:
            memo = set()

        if hasattr(curr_module, 'named_leaves'):
            for name, p in curr_module.named_leaves():
                if p is not None and p not in memo:
                    memo.add(p)
                    yield prefix + ('.' if prefix else '') + name, p
        else:
            for name, p in curr_module._parameters.items():
                if p is not None and p not in memo:
                    memo.add(p)
                    yield prefix + ('.' if prefix else '') + name, p

        for mname, module in curr_module.named_children():
            submodule_prefix = prefix + ('.' if prefix else '') + mname
            for name, p in self.named_params(module, memo, submodule_prefix):
                yield name, p

    def update_params(self, lr_inner, first_order=False, source_params=None, detach=False):
        if source_params is not None:
            for tgt, src in zip(self.named_params(self), source_params):
                name_t, param_t = tgt
                grad = src
                if first_order:
                    grad = to_var(grad.detach().data)
                tmp = param_t - lr_inner * grad
                self.set_param(self, name_t, tmp)
        else:

            for name, param in self.named_params(self):
                if not detach:
                    grad = param.grad
                    if first_order:
                        grad = to_var(grad.detach().data)
                    tmp = param - lr_inner * grad
                    self.set_param(self, name, tmp)
                else:
                    param = param.detach_()
                    self.set_param(self, name, param)

    def set_param(self, curr_mod, name, param):
        if '.' in name:
            n = name.split('.')
            module_name = n[0]
            rest = '.'.join(n[1:])
            for name, mod in curr_mod.named_children():
                if module_name == name:
                    self.set_param(mod, rest, param)
                    break
        else:
            setattr(curr_mod, name, param)

    def detach_params(self):
        for name, param in self.named_params(self):
            self.set_param(self, name, param.detach())

    def copy(self, other, same_var=False):
        for name, param in other.named_params():
            if not same_var:
                param = to_var(param.data.clone(), requires_grad=True)
            self.set_param(name, param)


# 线性层:继承自MetaModule类,并重写了前向传播方法。
class MetaLinear(MetaModule):
    def __init__(self, *args, **kwargs):
        super().__init__()
        ignore = nn.Linear(*args, **kwargs)

        self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))
        self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))

    def forward(self, x):
        return F.linear(x, self.weight, self.bias)

    def named_leaves(self):
        return [('weight', self.weight), ('bias', self.bias)]


# 归一化线性层:继承自MetaModule类,并重写了前向传播方法。
class MetaLinear_Norm(MetaModule):
    def __init__(self, *args, **kwargs):
        super().__init__()
        temp = nn.Linear(*args, **kwargs)
        temp.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
        self.register_buffer('weight', to_var(temp.weight.data.t(), requires_grad=True))
        self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)

    def forward(self, x):
        out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0))
        return out

    def named_leaves(self):
        return [('weight', self.weight)]


# 卷积层:继承自MetaModule类,并重写了前向传播方法。
class MetaConv2d(MetaModule):
    def __init__(self, *args, **kwargs):
        super().__init__()
        ignore = nn.Conv2d(*args, **kwargs)

        self.in_channels = ignore.in_channels
        self.out_channels = ignore.out_channels
        self.stride = ignore.stride
        self.padding = ignore.padding
        self.dilation = ignore.dilation
        self.groups = ignore.groups
        self.kernel_size = ignore.kernel_size

        self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))

        if ignore.bias is not None:
            self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))
        else:
            self.register_buffer('bias', None)

    def forward(self, x):
        return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)

    def named_leaves(self):
        return [('weight', self.weight), ('bias', self.bias)]


# 转置卷积层:继承自MetaModule类,并重写了前向传播方法。
class MetaConvTranspose2d(MetaModule):
    def __init__(self, *args, **kwargs):
        super().__init__()
        ignore = nn.ConvTranspose2d(*args, **kwargs)

        self.stride = ignore.stride
        self.padding = ignore.padding
        self.dilation = ignore.dilation
        self.groups = ignore.groups

        self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))

        if ignore.bias is not None:
            self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))
        else:
            self.register_buffer('bias', None)

    def forward(self, x, output_size=None):
        output_padding = self._output_padding(x, output_size)
        return F.conv_transpose2d(x, self.weight, self.bias, self.stride, self.padding,
                                  output_padding, self.groups, self.dilation)

    def named_leaves(self):
        return [('weight', self.weight), ('bias', self.bias)]


# 批归一化层:继承自MetaModule类,并重写了前向传播方法。
class MetaBatchNorm2d(MetaModule):
    def __init__(self, *args, **kwargs):
        super().__init__()
        ignore = nn.BatchNorm2d(*args, **kwargs)

        self.num_features = ignore.num_features
        self.eps = ignore.eps
        self.momentum = ignore.momentum
        self.affine = ignore.affine
        self.track_running_stats = ignore.track_running_stats

        if self.affine:
            self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))
            self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))

        if self.track_running_stats:
            self.register_buffer('running_mean', torch.zeros(self.num_features))
            self.register_buffer('running_var', torch.ones(self.num_features))
        else:
            self.register_parameter('running_mean', None)
            self.register_parameter('running_var', None)

    def forward(self, x):
        return F.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias,
                            self.training or not self.track_running_stats, self.momentum, self.eps)

    def named_leaves(self):
        return [('weight', self.weight), ('bias', self.bias)]


class LambdaLayer(MetaModule):
    def __init__(self, lambd):
        super(LambdaLayer, self).__init__()
        self.lambd = lambd

    def forward(self, x):
        return self.lambd(x)


# BasicBlock类,它是ResNet中的基本块。它继承自MetaModule类,并重写了前向传播方法。
class BasicBlock(MetaModule):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1, option='A'):
        super(BasicBlock, self).__init__()
        self.conv1 = MetaConv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = MetaBatchNorm2d(planes)
        self.conv2 = MetaConv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = MetaBatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != planes:
            if option == 'A':
                self.shortcut = LambdaLayer(lambda x:
                                            F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes // 4, planes // 4), "constant",
                                                  0))
            elif option == 'B':
                self.shortcut = nn.Sequential(
                    MetaConv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
                    MetaBatchNorm2d(self.expansion * planes)
                )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


# for metamodel
# 定义了ResNet32类,它是一个完整的ResNet模型。
# 它继承自MetaModule类,并定义了ResNet的整体结构和前向传播方法。
class ResNet32_meta(MetaModule):
    # _first_init_done = False

    def __init__(self, num_classes, block=BasicBlock, num_blocks=[5, 5, 5]):
        super(ResNet32_meta, self).__init__()
        self.in_planes = 16

        self.conv1 = MetaConv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = MetaBatchNorm2d(16)
        self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
        self.linear = MetaLinear(64, num_classes)

        self.apply(_weights_init)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion

        return nn.Sequential(*layers)

    def forward(self, x, epoch):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = F.avg_pool2d(out, out.size()[3])
        out = out.view(out.size(0), -1)
        y = self.linear(out)
        return out, y

# for main
class ResNet32(MetaModule):

    def __init__(self, num_classes, block=BasicBlock, num_blocks=[5, 5, 5, 5]):
        super(ResNet32, self).__init__()
        self.in_planes = 16

        self.conv1 = MetaConv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = MetaBatchNorm2d(16)
        self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 128, num_blocks[3], stride=2)

        # Add
        # print("Using self attention")
        # self.modulatedatt = ModulatedAttLayer(in_channels=64 * block.expansion)
        #
        #
        # self.cbam = CBAM(64 * block.expansion, 64)

        # self.scse1 = SCse(16*block.expansion)
        # self.scse2 = SCse(32*block.expansion)
        # self.scse3 = SCse(64*block.expansion)

        self.linear = MetaLinear(128, num_classes)

        self.apply(_weights_init)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion

        return nn.Sequential(*layers)

    def forward(self, x, epoch):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)

        out = self.layer4(out)


        out = F.avg_pool2d(out, out.size()[3])
        # out = F.avg_pool2d(out, kernel_size=(13, 18))
        out = out.view(out.size(0), -1)

        y = self.linear(out)
        return out, y


def to_var(x, requires_grad=True):
    if torch.cuda.is_available():
        x = x.cuda()
    return Variable(x, requires_grad=requires_grad)


def _weights_init(m):
    classname = m.__class__.__name__
    if isinstance(m, MetaLinear) or isinstance(m, MetaConv2d):
        init.kaiming_normal(m.weight)

image

标签:__,自定义,self,cam,grad,image,def,out
From: https://www.cnblogs.com/ZarkY/p/18111458

相关文章

  • bottom tap新增一个自定义icon,点击弹出Modal
    我想实现的效果是这样的:    注意:Modal的背景还是其他的tab,并没有变化,等Modal消失后Screen还是原来的screen。Solution:   因为中间的自定义图标按钮需要有一部分在Tab中,所以还是把icon作为tab中的一个screen的,于是就借用:tabBarButton来实现,参考了一些文章,都是把M......
  • 按指定规则(自定义)拆分PDF文件
    #-*-coding:utf-8-*-'''创建文件夹:1.txt:为拆分规则文件名,(在文件夹中写入1-4try,就是把1-4截取下来放在文件夹为try.pdf的文件夹下)m.pdf:为拆分文件名称split.py为文件的名称'''fromPyPDF2importPdfReader,PdfWriter#PDF文件分割defsplit_pdf():  t......
  • Quill文档(三):构建自定义模块
    Quill作为编辑器的核心优势在于其丰富的API和强大的定制能力。当您在Quill的API之上实现功能时,将其组织为一个模块可能会很方便。为了本指南的目的,我们将逐步介绍一种构建单词计数器模块的方法,这是许多文字处理器中常见的功能。注意在内部,模块是Quill的许多功能的组织方......
  • Camstar : IFrame菜单挂一个外部网站的页面
     如果设置变量传参: 这个是页面定义了两个固定变量:VP上的不同VP共用一个class。还有传递当前登录用户的: ......
  • Camstar半导体打印服务安装配置
    安装包配置如下: 保存后,启动服务。  ......
  • EL虚拟化表格 用h函数自定义表头并且指定插槽
    第一次使用el-table-v2,需要实现点击表头弹框来展示数据,官方文档中只有tsx的写法,没有使用h函数的写法,因此记录一下先看下最终的效果以下是部分代码import{ElButton,ElRadio,ElTooltip,ElPopover }from'element-plus'; //columns是一个数组,里面的值为每一列的配置......
  • 【docker】Dockerfile自定义镜像
           ......
  • Higress 基于自定义插件访问 Redis
    作者:钰诚简介基于wasm机制,Higress提供了优秀的可扩展性,用户可以基于Go/C++/Rust编写wasm插件,自定义请求处理逻辑,满足用户的个性化需求,目前插件已经支持redis调用,使得用户能够编写有状态的插件,进一步提高了Higress的扩展能力。文档在插件中调用Redis[1]中提供了......
  • vue 自定义tabs 样式的组件
    大家应该都用过tabs不同状态显示不同的列表 这种东西其实可以自己封装的其实是很简单的做一个这样简单的筛选组件 这样的跟tabs的效果一样上代码<template><divclass="switch-container"><divclass="box"><divclass="box-item"......
  • MogDB/openGauss 自定义snmptrapd告警信息
    MogDB/openGauss自定义snmptrapd告警信息在实际使用中,默认的报警规则信息并不能很好的满足snmp服务端的需求,需要定制化报警信息,这里以添加ip为例,看似一个简单的将IP一行信息单独在报警展示出来,涉及到的配置文件修改还是挺多的。修改prometheus.yml文件首先需要修改......