首页 > 其他分享 >SAT中的 width-based algorithm

SAT中的 width-based algorithm

时间:2024-03-28 20:22:05浏览次数:27  
标签:pp based algorithm width 2007 2008 SAT sat

文献:

 
 
@inproceedings{DBLP:conf/sat/PipatsrisawatD09,
  author       = {Knot Pipatsrisawat and
                  Adnan Darwiche},
  editor       = {Oliver Kullmann},
  title        = {Width-Based Restart Policies for Clause-Learning Satisfiability Solvers},
  booktitle    = {Theory and Applications of Satisfiability Testing - {SAT} 2009, 12th
                  International Conference, {SAT} 2009, Swansea, UK, June 30 - July
                  3, 2009. Proceedings},
  series       = {Lecture Notes in Computer Science},
  volume       = {5584},
  pages        = {341--355},
  publisher    = {Springer},
  year         = {2009},
  url          = {https://doi.org/10.1007/978-3-642-02777-2\_32},
  doi          = {10.1007/978-3-642-02777-2\_32},
  timestamp    = {Tue, 14 May 2019 10:00:41 +0200},
  biburl       = {https://dblp.org/rec/conf/sat/PipatsrisawatD09.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

 

 

重点内容在第2-3节

 

 

1. width-based algorithm

Galil [12] proposed a SAT algorithm which runs in time exponential in the width of the CNF formula. This algorithm, which was later reformulated in [13] and [9], works by deriving all resolvents of size ≤ k, for increasing k. Since there are only O(nk) clauses of size ≤ k,wheren is the total number of variables, this algorithm works well on formulas with bounded or small widths. Moreover, it was shown in [9] that this algorithm runs in time that is at most quasi-polynomial in the size of the smallest tree-like refutation proof (i.e., optimal DPLL). Nevertheless, one drawback which limits the practicality of this approach is the amount of memory it requires. Even though the space complexity of the algorithm is only exponential in the width of the proof, in practice, this could be a serious limiting factor–especially when compared to the clause-learning descendants of DPLL, which perform resolution in a more directed way and keep only a fraction of the resolvents in the knowledge base. The restart policies that we propose in this work can be thought of as a way to efficiently combine the benefits of both approaches. In other words, our approach canbeviewedasawayofusingthelowmemory requirement of modern clause learning SAT algorithms to loosely imitate the above width-based algorithm.

References

1. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial search. In: Principles and Practice of Constraint Programming, pp. 121–135 (1997)

2. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient sat solver. In: Proc. of DAC 2001, pp. 530–535 (2001)

3. E´ en, N., S¨orensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

4. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. In: DATE 2002, pp. 142–149 (2002)

5. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proc. of IJCAI 2007, pp. 2318–2323 (2007)

6. Biere, A.: Adaptive restart strategies for conflict driven sat solvers. In: Kleine B¨ uning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)

7. Ryvchin, V., Strichman, O.: Local restarts. In: Kleine B¨ uning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008)

8. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. JAIR 22, 319–351 (2004)

9. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple. J. ACM 48(2), 149–169 (2001)

10. Ryan, L.: Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis, Simon Fraser University (2004)

11. Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based checker: Practical implementations and other applications. In: DATE 2003, pp. 880–885 (2003)

12. Galil, Z.: On resolution with clauses of bounded size. SIAM Journal on Comput ing 6(3), 444–459 (1977)

13. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: Annual IEEE Symposium on Foundations of Computer Science, p. 274 (1996)

14. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An efficient sat solver. In: Proc. of SAT 2005, pp. 360–375 (2005)

15. Nadel, A., Gordon, M., Patti, A., Hanna, Z.: Eureka-2006 sat solver Solver descrip tion for SAT-Race 2006 (2006)

16. Biere, A.: Picosat essentials. JSAT, 75–97 (2008)

17. Huang, J.: A case for simple SAT solvers. In: Bessi`ere, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 839–846. Springer, Heidelberg (2007)

18. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: Sat solver description. Technical Re port D–153, Automated Reasoning Group, Computer Science Department, UCLA (2007)

19. S¨orensson, N., E´ en, N.: Minisat 2.1 and minisat++ 1.0–sat race 2008 editions (2008

20. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree like and general resolution. Combinatorica 24(4), 585–603 (2004) 21. Babi´ c, D., Hu, A.J.: Structural Abstraction of Software Verification Conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 371–383. Springer, Heidelberg (2007)

22. Babi´ c, D., Hu, A.J.: Calysto: Scalable and Precise Extended Static Checking. In: Proc. of ICSE 2008, pp. 211–220 (2008)

23. Hertel, A., Urquhart, A.: Comments on eccc report tr06-133: The resolution width problem is exptime-complete. Technical Report TR09-003, ECCC (2009)

24. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

25. Dechter, R.: Enhancement schemes for constraint processing: backjumping, learn ing, and cutset decomposition. Artif. Intell. 41(3), 273–312 (1990)

26. Bayardo, R.J., Miranker, D.P.: A complexity analysis of space-bounded learning algorithms for the constraint satisfaction problem. In: AAAI 1996, pp. 298–304 (1996)

27. Bayardo, R.J.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world SAT instances. In: Proc. of AAAI 1997, Providence, Rhode Island, pp. 203–208 (1997)

28. Nadel, A.: Backtrack search algorithms for propositional logic satisfiability: Review and innovations. Master’s thesis, The Hebrew University (2002

 

 

2.   Existing and Width-Based Restart Policies

Width-Based Restart Policies for Clause-Learning Satisfiability Solvers. SAT 2009: 341-355

 

 

标签:pp,based,algorithm,width,2007,2008,SAT,sat
From: https://www.cnblogs.com/yuweng1689/p/18102544

相关文章

  • Large Language Models Based Fuzzing Techniques: A Survey
    本文是LLM系列文章,针对《LargeLanguageModelsBasedFuzzingTechniques:ASurvey》的翻译。基于大型语言模型的模糊化技术综述摘要1引言2背景3基于LLM的模糊测试分析4关于未来工作和挑战的讨论5结论摘要在软件发挥关键作用的现代,软件安全和漏洞分析......
  • IfcConversionBasedUnit Basic unit declaration
    IfcConversionBasedUnit  当没有使用实体类型IfcMeasureWithUnit作为属性的数据类型更具体地定义单位时,项目的全局单位分配定义度量值和值的全局单位。项目的全球基本长度、面积、体积和时间单位定义为国际单位制的示例:#1=IFCPROJECT(’00ZhrqZYLBcgy$rVVaiu2A’,$,’Exa......
  • 论文解读:Convolutional Neural Network-based Place Recognition-2014
    关注微信公众号:XRobotSpace关注微信公众号:依法编程发表期刊/会议:ACRA发表时间:2014参考引用:Z.Chen,O.Lam,A.Jacobson,M.Milford,Convolutionalneuralnetwork-basedplacerecognition,in:2014AustralasianConferenceonRoboticsandAutomation(......
  • As a reader --> On the Robustness of ML-Based Network Intrusion Detection System
    ......
  • 栅格地图路径规划:基于螳螂搜索算法(Mantis Search Algorithm,MSA)的机器人路径规划(提供MA
        一、机器人路径规划介绍移动机器人(Mobilerobot,MR)的路径规划是移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人......
  • 论文精读系列文章——Point-LIO: Robust High-Bandwidth Light Detection and Ranging
    论文精读系列文章下面是SLAM算法与工程实践系列文章的总链接,本人发表这个系列的文章链接均收录于此论文精读系列文章链接下面是专栏地址:论文精读系列文章专栏文章目录论文精读系列文章论文精读系列文章链接论文精读系列文章专栏前言论文精读系列文章——......
  • mongo page query based on conditions
    一、MongoTemplate中Aggregation应用使用Aggregation聚合查询支持返回固定字段支持分组计算(count)总数、(sum)求和、(avg)平均值、(max)最大值、(min)最小值等publicPage<Student>getListWithAggregation(StudentVOstudentVO){Sortsort=Sort.by(Sort.Directi......
  • 在Linux中,在不同的Linux发行版中(如RPM-based和DEB-based)如何安装、升级、删除软件包?
    在Linux中,不同的发行版采用了不同的包管理器来处理软件安装、升级和删除操作。以下是基于RPM(RedHatPackageManager)系统(如RedHatEnterpriseLinux,CentOS,Fedora等)和基于DEB(Debianpackage)系统的(如Debian,Ubuntu,LinuxMint等)的操作说明:1.RPM-based系统(使用yum或dnf......
  • 基于Rust的Tile-Based游戏开发杂记(02)ggez绘图实操
    尽管ggez提供了很多相关特性的demo供运行查看,但笔者第一次使用的时候还是有很多疑惑不解。经过仔细阅读demo代码并结合自己的实践,逐步了解了ggez在不同场景下的绘图方式,在此篇文章进行一定的总结,希望能够帮助到使用ggez的读者。供运行查看,但笔者第一次使用的时候还是有很多疑惑不......
  • Federated Learning with Differential Privacy:Algorithms and Performance Analysis
    2024/2/11大四做毕设的时候第一次读这篇论文,当时只读了前一部分,后面关于收敛界推导证明的部分没有看,现在重新完整阅读一下这篇文章。本文贡献提出了一种基于差分隐私(DP)概念的新框架,其中在聚合之前将人工噪声添加到客户端的参数中,即模型聚合前加噪FL(NbAFL)我们提出了Nb......