首页 > 其他分享 >spark-submit 主要参数详细说明及Standalone集群最佳实践

spark-submit 主要参数详细说明及Standalone集群最佳实践

时间:2024-03-26 18:34:37浏览次数:32  
标签:主要参数 Standalone -- driver submit executor cores spark Spark

文章目录


1. 前言

部署提交应用到 spark 集群,可能会用到 spark-submit 工具,鉴于网上的博客质量残差不齐,且有很多完全是无效且错误的配置,没有搞明白诸如--total-executor-cores--executor-cores--num-executors的关系和区别。因此有必要结合官网文档 submitting-applications 详细记录一下参数的含义。

2. 参数说明

一般的用法是:spark-submit [option] xx.jar/xx.py
详细说明如下:

Usage: spark-submit [options] <app jar | python file | R file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...]
Usage: spark-submit run-example [options] example-class [example args]

Options:
  --master MASTER_URL         spark://host:port, mesos://host:port, yarn,
                              k8s://https://host:port, or local (Default: local[*]).
  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
                              on one of the worker machines inside the cluster ("cluster")
                              (Default: client).
  --class CLASS_NAME          Your application's main class (for Java / Scala apps).
  --name NAME                 A name of your application.
  --jars JARS                 Comma-separated list of jars to include on the driver
                              and executor classpaths.
  --packages                  Comma-separated list of maven coordinates of jars to include
                              on the driver and executor classpaths. Will search the local
                              maven repo, then maven central and any additional remote
                              repositories given by --repositories. The format for the
                              coordinates should be groupId:artifactId:version.
  --exclude-packages          Comma-separated list of groupId:artifactId, to exclude while
                              resolving the dependencies provided in --packages to avoid
                              dependency conflicts.
  --repositories              Comma-separated list of additional remote repositories to
                              search for the maven coordinates given with --packages.
  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
                              on the PYTHONPATH for Python apps.
  --files FILES               Comma-separated list of files to be placed in the working
                              directory of each executor. File paths of these files
                              in executors can be accessed via SparkFiles.get(fileName).
  --archives ARCHIVES         Comma-separated list of archives to be extracted into the
                              working directory of each executor.

  --conf, -c PROP=VALUE       Arbitrary Spark configuration property.
  --properties-file FILE      Path to a file from which to load extra properties. If not
                              specified, this will look for conf/spark-defaults.conf.

  --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
  --driver-java-options       Extra Java options to pass to the driver.
  --driver-library-path       Extra library path entries to pass to the driver.
  --driver-class-path         Extra class path entries to pass to the driver. Note that
                              jars added with --jars are automatically included in the
                              classpath.

  --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).

  --proxy-user NAME           User to impersonate when submitting the application.
                              This argument does not work with --principal / --keytab.

  --help, -h                  Show this help message and exit.
  --verbose, -v               Print additional debug output.
  --version,                  Print the version of current Spark.

 Spark Connect only:
   --remote CONNECT_URL       URL to connect to the server for Spark Connect, e.g.,
                              sc://host:port. --master and --deploy-mode cannot be set
                              together with this option. This option is experimental, and
                              might change between minor releases.

 Cluster deploy mode only:
  --driver-cores NUM          Number of cores used by the driver, only in cluster mode
                              (Default: 1).

 Spark standalone or Mesos with cluster deploy mode only:
  --supervise                 If given, restarts the driver on failure.

 Spark standalone, Mesos or K8s with cluster deploy mode only:
  --kill SUBMISSION_ID        If given, kills the driver specified.
  --status SUBMISSION_ID      If given, requests the status of the driver specified.

 Spark standalone and Mesos only:
  --total-executor-cores NUM  Total cores for all executors.

 Spark standalone, YARN and Kubernetes only:
  --executor-cores NUM        Number of cores used by each executor. (Default: 1 in
                              YARN and K8S modes, or all available cores on the worker
                              in standalone mode).

 Spark on YARN and Kubernetes only:
  --num-executors NUM         Number of executors to launch (Default: 2).
                              If dynamic allocation is enabled, the initial number of
                              executors will be at least NUM.
  --principal PRINCIPAL       Principal to be used to login to KDC.
  --keytab KEYTAB             The full path to the file that contains the keytab for the
                              principal specified above.

 Spark on YARN only:
  --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").

我把一些主要的参数列举一下:

  • --master MASTER_URL ,其中 MASTER_URL 可选如下:
    • local,启1个work线程本地运行应用程序
    • local[K],启K个work线程本地运行应用程序
    • local[K,F],启K个work线程本地运行应用程序,且运行中最大容忍F次失败次数
    • local[*],尽可能多启动cpu逻辑线程本地运行应用程序
    • local[*,F],尽可能多启动cpu逻辑线程本地运行应用程序,且运行中最大容忍F次失败次数
    • local-cluster[N,C,M],仅用于单元测试,它在一个JVM中模拟一个分布式集群,其中有N个工作线程,每个工作线程有C个内核,每个工作进程有M MiB的内存。
    • spark://host:port,连接standalone集群的master节点,端口默认7077
    • spark://HOST1:PORT1,HOST2:PORT2,连接带有Zookeeper备份的standalone集群的master节点。该列表必须使用Zookeeper设置高可用性集群中的所有主主机,端口默认7077。
    • mesos://host:port,连接 Mesos 集群,端口默认5050
    • yarn,连接 YARN 集群,此外--deploy-mode参数决定了是client还是cluster模式
    • k8s://https://host:port 连接 K8s 集群,此外--deploy-mode参数决定了是client还是cluster模式
  • --deploy-mode 可选cluster及client。cluster:在work节点上部署driver。client:作为外部client在本地部署driver,默认是client
  • --driver-memory MEM 分配driver的内存,默认1024M
  • --executor-memory MEM 分配每个executor的内存,默认1G
  • --driver-cores NUM driver 可以使用的核数,默认1。注意仅在cluster模式下有效
  • --total-executor-cores NUM 所有的executor总共的核数。注意仅在Spark standalone 以及 Mesos下生效
  • --executor-cores NUM 每个executor可以使用的核数,默认1。注意仅在 Spark standalone, YARN以及Kubernetes下生效
  • --num-executors NUM executor启动的数量,默认2。注意仅在Spark on YARN 以及 Kubernetes下生效

3. Standalone集群最佳实践

因为Spark Standalone集群下--num-executors NUM 参数不生效,而且如果你没有用--deploy-mode=cluster,那么--driver-cores NUM 参数也是不生效的,那么一种可行的提交参数:

spark-submit 
--master spark://master:7077 
--name spark-app
--total-executor-cores={集群机器数}*{一台机器的逻辑核数-1}
--executor-cores={一台机器的逻辑核数-1}
--executor-memory={一台机器的内存-3GB}
xxx.py

例如,Spark Standalone集群有3台机器,每台机器cpu核数是16,每台机器的内存是16GB,那么可以如下提交:

spark-submit 
--master spark://master:7077 
--name spark-app
--total-executor-cores=45
--executor-cores=15
--executor-memory=13GB
xxx.py

当然,--executor-memory 可以根据实际情况去调整,先大致看一下有多少空闲的内存:

free -h

然后再调整大小~

标签:主要参数,Standalone,--,driver,submit,executor,cores,spark,Spark
From: https://blog.csdn.net/qq_36803941/article/details/137053084

相关文章

  • SUBMIT指定用户名错误
    1、SUBMIT说明 在ABAP中,SUBMIT关键字用于运行另一个ABAP程序。通过SUBMIT关键字,可以在当前程序内部调用其他程序,而无需关闭当前程序。SUBMIT语句的一般语法如下:"--------------------@斌将军--------------------SUBMIT<program>[VIASELECTION-SCREEN|USINGSELECTION-SE......
  • Flink 1.18 Standalone 应用模式部署
    本文基于:FlinkJavaDemo1.下载https://dlcdn.apache.org/flink/flink-1.18.0/flink-1.18.0-bin-scala_2.12.tgz2.解压mkdir/usr/flinktar-zxvf/home/flink-1.18.0-bin-scala_2.12.tgz-C/usr/flink/3.推送端运行netcatnc-lp78784.将Maven的包复制到flink的lib目......
  • Spark版本不兼容导致Standalone集群无法连接问题
    一、Spark版本不一致报错现象当使用client模式连接Spark的standalone集群时,报错所有的sparkmaster的节点都没有回应。二、问题排查思路 通过client端的日志产看没有什么有价值的信息,需要看下spark端的master的日志,docker logsspark-master 产看docker容器spark-master......
  • Spark 3.5.0 独立部署(Standalone)模式
    1.下载Spark3.5.0https://spark.apache.org/downloads.html2.安装JDKLinux安装Openjdk3.安装HadoopHadoop-3.3.6分布式集群搭建步骤4.解压mkdir/usr/sparktar-zxvfspark-3.5.0-bin-hadoop3.tgz-C/usr/spark/5.配置1.修改集群节点配置......
  • Cisco Nexus 9000 系列交换机系统软件 NX-OS Standalone 10.4(1)F and ACI Mode 16.0(
    CiscoNexus9000SeriesSwitches,NX-OSStandalone10.4(1)FandACIMode16.0(3e)includeApplicationPolicyInfrastructureController(APIC)Release6.0(3e)作者主页:sysin.orgCiscoNexus9000系列交换机颠覆性交换机,开启全新未来打造统一数据中心与云环境的网络,超越......
  • Angular | standalone Component (一)
    指导链接:angular-Standalone-guide1.概述:standalone时在angular14版本引入的特性,作用是可以让组件、指令和管道独立。以后就可以独立的直接被引入其他组件,而不依赖ngmodule来引入,也可以在路由中实现组件的懒加载。1.1定义一个standalone组件://footComponentimport{Compo......
  • CLO Standalone 7:打造您的专属时尚帝国
    CLOStandalone7是一款功能强大的3D服装设计软件,它为设计师提供了一个全新的、直观的、高度互动的3D设计环境,以便他们创建高质量的服装设计和模拟。点击获取CLOStandalone7首先,这款软件具有强大的3D建模功能,可以创建各种复杂的服装结构和细节,从简单的上衣和裤子到复杂的礼服......
  • excute方法和submit方法
    区别:  1.参数    execute Runnable    submit   Callable  2.返回值    execute:void    submit:Future  3.异常    execute会在子线程中抛出异常,在主线程捕捉不到    submit不会字码抛出异常,而是会讲一次暂时存起来,等Future.get......
  • 如何在voj上用自己的账号提交(Submit with your own account)
    用voj交题的时候大部分情况都是voj用一个虚拟的bot账号帮你提交到对应题目所在的oj上进行判题但有些oj平台并不喜欢这种方式,它想让用户去用自己真实的账号提交,比如pta,洛谷,计蒜客......在voj上用自己的账号提交的方法如下:拿pta举例:在上图中我们发现我们需要一个叫做PTASes......
  • 表单提交由submit改为异步的方式
    1,submit方式(页面会按action的url跳转,这个不方便一些交互)functionsaveSingleYx(){$('#myTwoForm').submit();}2,ajax异步方式functionsaveSingleYx(){//document.getElementById('myTwoForm').setAttribute("action","saveSingleYx.ht&qu......