首页 > 其他分享 >谈一谈BEV和Transformer在自动驾驶中的应用

谈一谈BEV和Transformer在自动驾驶中的应用

时间:2024-03-25 15:49:18浏览次数:36  
标签:Transformer 谈一谈 位置 矩阵 CNN 100 BEV

谈一谈BEV和Transformer在自动驾驶中的应用

BEV和Transformer都这么火,这次就聊一聊。

image
结尾有资料连接

一 BEV有什么用

首先,鸟瞰图并不能带来新的功能,对规控也没有什么额外的好处。

从鸟瞰图这个名词就可以看出来,本来摄像头等感知到的物体都是3D空间里的的,投影到2D空间,只是信息的损失,也很简单(乘一个矩阵)。甚至是变换到ST图上所需的,中间过程的必备一步。

怎么能说哪个用了鸟瞰图,哪个没用呢。

所以,BEV可以理解为,指一个端到端的感知架构

所谓端到端,就是没有后处理,不需要作摄像头拼接和obj融合;单个摄像头内如对于道线的识别也不需要(像之前分割的方法那样)做后处理。

举一个反例,记忆泊车的感知算法,有一种做法是在AVM的图上进行SLAM,即使这是货真价实的在鸟瞰图上的算法,也没人天天宣传把这个叫BEV。

问题回到了感知本身。怎么做感知性能好。

不用作后处理当然是好事,如果没有其他缺点。只是,如果一个小球落下来,用牛顿力学一秒钟就能算准,是否需要做1万次实验,然后拟合一个网络来预测运动呢。

先说BEV优点:

  • 在摄像头fov的重叠区域的物体,自动match和加权,省去了后处理的人工时;

  • 跨越多个摄像头的物体,也就是fov边缘物体,可以先拼接后接入网络detection;如果不这么做,也可以再拼接一次再detection,但这样不太优雅;

  • 数采同步由Lidar,且标注用Lidar做时,BEV的GT是现成的。而很多Mono3D网络的GT需要的2D框却没有现成的。

再说缺点:

  • 重叠区域,双目多视角几何的距离等指标算的更准;

  • 感知范围小(距离小一半),位置分表率低(投影之后分辨率为m级);

  • 不透明的处理 相机内外参 和 IMU 等输入,类似上面牛顿力学的例子,交给网络去预测确定的公式;

  • 暂无成熟的网络可用。

第一个优点,是使用BEV的核心诉求。

所以,一般BEV的模型还带上了如下feature:

  • 时间滤波;

  • 道线与地图的定位融合;

这些都是很好的探索,挖掘AI的应用潜力。

二 BEV怎么做

BEV要做的核心事情就是一件:把2D相机视角下的feature投影到2D鸟瞰图上。

但是,这个投影需要知道深度信息。当相机视角下,还没做到detection回归距离时,是只有平面的特征图的。‘

用AI,当然是假装知道了深度,投影变换用一个矩阵表示,然后靠数据去学习这个矩阵。可以理解为,把回归距离这一步在这做一遍。单帧图像当然可以做,靠近大远小,车和人的尺寸都是固定的,这个规律不难学到。

但是,细节上,想浪费时间的人且看以下:(我非常不喜欢看这些论文,但是最近看了不少):

image

(CVPR), 2019, https://doi.org/10.1109/cvpr.2019.00864

第一篇,先做深度估计,再做detection,能准就怪了。当你抬头看云彩,觉得一多云像草尼马后,你才会体会到距离,再之前,你是迷茫的。

image

FCOS3D:ICCVW, 2021

第二篇,深度估计和detection分离并行,同上,求大家灌水敬业一点。

image

Lift, Splat, Shoot: ECCV 2020

第三篇,非常粗爆,直接把cnn得到的features定义为深度分布和context(语义信息)。其中深度分度是一个41维的向量,且每个相机的每个像素点对应一个深度向量和语义向量。所以这是一个惊人大的需要去拟合的tensor。文章写的比较敷衍,连网络定义和图都没有,看样子也嫌浪费时间。

image

Simple-BEV. 2022.

第四篇,终于正常点,一个BEV点最多对应两个相机点,也就是200*200的矩阵中,每个点对应两个待拟合的小矩阵。比上一篇需要拟合的数少了1000倍。

image

DETR3D 2021

第五篇,用上了transformer,有网红潜力了。右下角那个decoder的query是按obj的数量来的,obj的数量在0-100之间波动,当数量少时,变成网络瓶颈,对训练效果以及推理的连续性肯定有影响。

image

BEVFormer ECCV 2022

第六篇,充分吸取过往经验,名字碰瓷tesla,BEVFormer,所以真红了。不过中间那个明明是decoder,为什么作者要叫encoder。

这篇和第四篇区别:1个BEV点要学习4个矩阵(4个偏置和权重),且网络深度上循环六次,比第四篇多10倍,可能第四篇太少了。

这篇和第五篇区别:那个蓝色的BEV queries大小固定,和BEV输出大小一致。比第五篇多1000-10000倍。

为什么要用Transfomer

先简单说下:

CNN 优点:
1适合并行计算

2适合视觉

3参数少(比MLP)

CNN 缺点:

1 没有全局联系 只能靠最后的全连接层(MLP) 但MLP不能太深

2 不适合做(时间)序列,不像RNN,所以滤波什么的不擅长。

RNN:我能做滤波啊,但RNN不适合并行(主要是训练),考虑到卡那么贵,还是算的快的能生存,所以被transformer淘汰了

Transformer优点:

1 适合并行计算(和CNN差不多)

2 适合做(时间)序列,所以BEV有了这个能力

3 对于大模型容易训练 (因为参数冗余多,不容易陷入局部最优),CNN也比较容易训练(自动驾驶适用大小的模型)。

4 可以建立长距离的联系 (CNN不行,MLP可以但是太臃肿)

Transformer缺点:

1 不适合视觉。所以backbone还是CNN

2 没了。

But,上面文章中的Transformer是假的。至于为啥,下次再说。

我一直认为,模型是啥,本身就不重要:

  • 这几年GoogLeNet为代表的复杂模型已经被淘汰了,

  • CNN在工业界已全是最简单的残差模型,

  • GPT的胜出也证明模型越简单越好,

  • AutoML以及NAS(网络架构搜索)毫无进展

所以,只要有进化条件,任何构型的生物都能在智能上超越人类。

三 注意力机制 Transformer的核心

大家都知道Transformer诞生的那篇google的论文叫什么什么is all your need。

注意力就是不同位置之间关联有多紧密的权重。

两个向量点积,模的最大值产生于向量夹角为0。也就是说,如果两个word意义相近,embedding向量也就相近,那自然注意力就大。这是最简单的一种情况,不用考虑位置向量。

image

红框里的计算,就是在去求这个关联的权重,得到一个方阵。毫无疑问,这就是trasformer的核心之处。

image

多说一句,为什么不直接学右边这个矩阵,而是要学左边这两个矩阵呢?

在NLP里,句子的最大长度在100-1000这个量级,而词向量的维度一般在10000-50000这个量级。
分别按100和10000举例,学左边,要学2000000(=2*100*10000)个参数;右边只要学10000(=100*100)个参数。相差200倍。

这里涉及到了AI原理性的问题,参数越少,训练越容易陷入局部最优,而参数多了,到处都是鞍点(维度高了,所有维度的二阶导都同号的概率低),很容易滑出去。

我们来看这些BEV论文怎么做的:

image

这里的注意力A是直接学出来的,并没有经过左边的乘法,而且它不是一个方阵,竟是一个标量。和Transformer愿意扩充200倍参数,是完全相反的。

看这个公式,确实只是一个b为0的单层MLP,Nkey的node,输出q维,输入x维。

我们可以看到,右边是BEV坐标(q),左边是相机坐标(p),这个公式就是把相机坐标映射到了BEV坐标。我一直没搞明白为什么要分自顶向下和反过来,不就是把等式左右两边换一下。

四 多头 决定Transformer能力的重要维度

关联有多种含义,比如一个人的头和手是关联的,代表了同一个人;一个人的头和另一个人的头是关联的,代表了都是头。

所以,这就是Multi-Head,多头注意力,一个位置在不同意义上和多个其他位置关联。

此外,Multi-Head还能再多出很多倍参数。NLP里,transformer的头数一般是100。

image

上面是一个8头的示意,先把每个头的输出拼接起来,再降维(找到最突出的方向)。

我们来看这些BEV论文怎么做的:

image

文中的Nhead是8。

但是,这是求和,其实还是加权,只不过把A的加权维度从8提升到了64.

所以,是单头。

五 位置编码 Transformer的必备要素

Transformer本身不能分辨输入的位置,对它来说,两个词调换位置是无感地(只要后面地向量位置都跟着换),所以处理序列问题(位置很重要)必须要加位置编码。包括Vit。

我们来看这些BEV论文怎么做的:

位置编码是一个学到的矩阵。

看来,这不是位置编码,只是叫这个名字。它们根本不关心输入的顺序。编码都是要精心设计的,要能有区分度,而且至少不能有重复的吧。

那为什么会这样呢?

image

会不会是因为,CNN压根就不需要位置编码呢。

六 其他

还有很多不像的地方,比如每个encoder都有的那个不参与反向算梯度的上一时刻的输出。

我猜可能不这样,梯度就传不下去,毕竟如前所说太瘦了。

我们回顾一下上次说的transformer的优点:

1 适合并行计算。因为既没有多头,也没有矩阵乘法,标量计算的维度也不大,所以变成了并行计算瓶颈。Transformer的特点没有了。

2 适合做(时间)序列,没有位置编码。

3 对于大模型容易训练 参数少。

4 可以建立长距离的联系 连“距离”这个概念都没有。而且都是在周围局部位置的加权。

附赠自动驾驶学习资料和量产经验:链接

标签:Transformer,谈一谈,位置,矩阵,CNN,100,BEV
From: https://www.cnblogs.com/autodriver/p/18094483

相关文章

  • # 基于BEV的自动驾驶会颠覆现有的自动驾驶架构吗
    基于BEV的自动驾驶会颠覆现有的自动驾驶架构吗引言很多人都有这样的疑问--基于BEV(BirdsEyeView)的自动驾驶方案是什么?这个问题,目前学术界还没有统一的定义,但从我的开发经验上,尝试做一个解释:以鸟瞰视角为基础形成的端到端的自动驾驶算法和系统。感知模块是最为重要的自动驾......
  • 马斯克开源的 grok-1 底层 Transformer 模型论文 《Attention is All You Need》
    拓展阅读马斯克开源的grok-1底层Transformer模型论文《AttentionisAllYouNeed》马斯克开源的grok-1大模型底层Transformer模型到底是个啥?马斯克开源的grok-1大模型硬核源码第1弹马斯克开源的grok-1大模型硬核源码第2弹马斯克开源的grok-1大模型硬核源......
  • 解决长尾问题,BEV-CLIP:自动驾驶中复杂场景的多模态BEV检索方法
    解决长尾问题,BEV-CLIP:自动驾驶中复杂场景的多模态BEV检索方法理想汽车的工作,原文,BEV-CLIP:Multi-modalBEVRetrievalMethodologyforComplexSceneinAutonomousDriving链接:https://arxiv.org/pdf/2401.01065.pdf自动驾驶中对复杂场景数据的检索需求正在增加,尤其是随着......
  • 机器学习算法那些事 | 使用Transformer模型进行时间序列预测实战
    本文来源公众号“机器学习算法那些事”,仅用于学术分享,侵权删,干货满满。原文链接:使用Transformer模型进行时间序列预测实战时间序列预测是一个经久不衰的主题,受自然语言处理领域的成功启发,transformer模型也在时间序列预测有了很大的发展。本文可以作为学习使用Transformer模......
  • 【论文精读】VIT:vision transformer论文
    相关文章【论文精读】Transformer:AttentionIsAllYouNeed文章目录相关文章一、文章概览(一)研究背景(二)核心思路(三)相关工作(三)文章结论二、模型细节(一)组成模块(二)模型的大体流程(三)具体的模型的前向过程(四)transformerencoder的公式表达(五)消融实验1、关于图像分类编码方......
  • # 自动驾驶感知新范式——BEV感知经典论文总结和对比(一)
    自动驾驶感知新范式——BEV感知经典论文总结和对比(一)博主之前的博客大多围绕自动驾驶视觉感知中的视觉深度估计(depthestimation)展开,包括单目针孔、单目鱼眼、环视针孔、环视鱼眼等,目标是只依赖于视觉环视摄像头,在车身周围产生伪激光雷达点云(Pseudolidar),可以模拟激光雷达的测距......
  • 政安晨:【深度学习处理实践】(九)—— Transformer架构
    咱们接着这个系列的上一篇文章继续:政安晨:【深度学习处理实践】(八)——表示单词组的两种方法:集合和序列https://blog.csdn.net/snowdenkeke/article/details/136762323Transformer是一种架构,用于在自然语言处理(NLP)和其他任务中进行序列到序列(seq2seq)学习。它于2017年由Vaswani......
  • 学习人工智能:Attention Is All You Need-2-Transformer模型;Attention机制;位置编码
    3.2注意力机制Attention注意力函数可以描述为将查询和一组键值对映射到输出的过程,其中查询、键、值和输出都是向量。输出被计算为值的加权和,其中每个值的权重由查询与相应键的兼容性函数计算得出。3.2.1缩放点积注意力 ScaledDot-ProductAttention我们将我们特定的......
  • 如何用pytorch调用预训练Swin Transformer中的一个Swin block模块
    1,首先,我们需要知道的是,想要调用预训练的SwinTransformer模型,必须要安装pytorch2,因为pytorch1对应的torchvision中不包含SwinTransformer。2,pytorch2调用预训练模型时,不建议使用pretrained=True,这个用法即将淘汰,会报警告。最好用如下方式:fromtorchvision.models.swin_trans......
  • 4.transformer
    建议直接看参考的知乎链接,我这是一坨1.encorder\[\mathrm{LayerNorm}\big(X+\mathrm{MultiHeadAttention}(X)\big)\]\[\mathrm{LayerNorm}\big(X+\mathrm{Feed}\mathrm{Forward}(X)\big)\]\[\mathrm{FeedForward}(X)=\max(0,XW_1+b_1)W_2+b_2\]做layernorm而不是batchnor......