51单片机学习笔记
1.单片机入门系列
单片机,英文Micro Controller Unit,简称MCU
江科大51开发板原理图
C51数据类型
进制转换
十进制 | 二进制 | 十六进制 | 十进制 | 二进制 | 十六进制 |
---|---|---|---|---|---|
0 | 0000 | 0 | 8 | 1000 | 8 |
1 | 0001 | 1 | 9 | 1001 | 9 |
2 | 0010 | 2 | 10 | 1010 | A |
3 | 0011 | 3 | 11 | 1011 | B |
4 | 0100 | 4 | 12 | 1100 | C |
5 | 0101 | 5 | 13 | 1101 | D |
6 | 0110 | 6 | 14 | 1110 | E |
7 | 0111 | 7 | 15 | 1111 | F |
单片机中的按键
轻触按键
数据运算
类别 | 运算符 | 意义 | 类别 | 运算符 | 意义 |
---|---|---|---|---|---|
算术 | + | 加 | 逻辑 | && | 逻辑与 |
- | 减 | || | 逻辑或 | ||
* | 乘 | ! | 逻辑非 | ||
/ | 除 | 位运算 | << | 按位左移 | |
% | 取余 | >> | 按位右移 | ||
= | 赋值 | & | 按位与 | ||
判断 | > | 大于 | | | 按位或 | |
>= | 大于等于 | ^ | 按位异或 | ||
< | 小于 | ~ | 按位取反 | ||
<= | 小于等于 | ||||
== | 等于 | ||||
!= | 不等于 |
基本语句
语句 | 解释 | 语句 | 解释 |
---|---|---|---|
if(逻辑表达式) { 语句体1; } else | 如果逻辑表达式成立 执行语句体1 否则 执行语句体2 (else可以不写) | for(初始化;逻辑表达式;更改条件) | 先执行初始化 再判断逻辑表达式 若成立则执行循环体 执行后更改条件 再判断逻辑表达式 直到表达式不成立 |
while(逻辑表达式) | 如果逻辑表达式成立 执行循环体 执行后再次判断 若还成立则继续执行直到表达式不成立 | switch(变量) | 将变量与case后的各个常量对比 若有相等,则执行相应的语句体 若没有一个相等,则执行default后的语句体 (default可以不写) |
按键的抖动
对于机械开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开,所以在开关闭合及断开的瞬间会伴随一连串的抖动
数码管
•LED数码管:数码管是一种简单、廉价的显示器,是由多个发光二极管封装在一起组成“8”字型的器件
数码管引脚
数组
数组:把相同类型的一系列数据统一编制到某一个组别中,可以通过数组名+索引号简单快捷的操作大量数据
int x[3]; //定义一组变量(3个)
int x[]={1,2,3}; //定义一组变量并初始化
x[0] //引用数组的第0个变量
x[1] //引用数组的第1个变量
x[2] //引用数组的第2个变量
引用x[3]时,数组越界,读出的数值不确定,应避免这种操作
子函数
子函数:将完成某一种功能的程序代码单独抽取出来形成一个模块,在其它函数中可随时调用此模块,以达到代码的复用和优化程序结构的目的
void Function(unsigned char x, y)
{
}
返回值 函数名(形参)
{
函数体
}
数码管段码表
0 1 2 3 4 5 6 7 8 9
0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,
A B C D E F 空
0x77,0x7C,0x39,0x5E,0x79,0x71,0x00,
实验1
1.1 点亮一个LED
#include <REGX52.H>
void main()
{
P2 = 0xFE;// 1111 1110 //P2口代表LED灯管
}
1.2 LED闪烁
几个毫秒闪烁一次
#include <REGX51.H>
#include <INTRINS.H>
// 延时函数
void Delay500ms() //@12.000MHz
{
unsigned char i, j, k;
_nop_();
i = 4;
j = 205;
k = 187;
do
{
do
{
while (--k);
} while (--j);
} while (--i);
}
void main(){
while(1)
{
P2 = 0xFE;
Delay500ms();
P2 = 0xFF;
Delay500ms();
}
}
1.3 LED 流水灯
LED灯管循环亮灭
#include <REGX52.H>
#include <INTRINS.H>
void Delay500ms(void) //@12.000MHz
{
unsigned char data i, j, k;
_nop_();
i = 4;
j = 205;
k = 187;
do
{
do
{
while (--k);
} while (--j);
} while (--i);
}
void main(){
while(1){
P2 = 0xFE; //1111 1110
Delay500ms();
P2 = 0xFD; // 1111 1101
Delay500ms();
P2 = 0xFB; // 1111 1011
Delay500ms();
P2 = 0xF7; // 1111 0111
Delay500ms();
P2 = 0xEF; // 1110 1111
Delay500ms();
P2 = 0xDF; // 1101 1111
Delay500ms();
P2 = 0xBF; // 1011 0111
Delay500ms();
P2 = 0x7F; // 0111 0111
Delay500ms();
}
}
#include <REGX52.H>
void Delay1ms(unsigned int xms ) //@12.000MHz
{
unsigned char data i, j;
while(xms){
i = 2;
j = 239;
do
{
while (--j);
} while (--i);
xms = xms-1;
}
}
void main(){
while(1){
P2 = 0xFE; //1111 1110
Delay1ms(500);
P2 = 0xFD; // 1111 1101
Delay1ms(500);
P2 = 0xFB; // 1111 1011
Delay1ms(500);
P2 = 0xF7; // 1111 0111
Delay1ms(100);
P2 = 0xEF; // 1110 1111
Delay1ms(100);
P2 = 0xDF; // 1101 1111
Delay1ms(500);
P2 = 0xBF; // 1011 0111
Delay1ms(100);
P2 = 0x7F; // 0111 0111
Delay1ms(500);
}
}
1.4 独立按键控制LED
按下K1 亮灯,松开熄灭
#include <REGX51.H>
void main(){
// P2 = 0xFE;
while(1){
if(P3_1==0 || P3_0==0){
P2_0 = 0;
}else{
P2_0 = 1;
}
}
}
1.5 独立控制LED 显示二进制
#include <REGX51.H>
#include <INTRINS.H>
void Delayxms(unsigned int xms) //@11.0592MHz
{
unsigned char i, j;
while(xms--){
i = 2;
j = 239;
do
{
while (--j);
} while (--i);
}
}
void main()
{
unsigned char LEDNum=0;
while(1){
if(P3_1==0){
Delayxms(20);
while(P3_1==0);
Delayxms(20);
LEDNum++;
P2=~LEDNum;
}
}
}
1.6 独立控制LED移位
#include <REGX52.H>
void Delay(unsigned int xms);
unsigned char LEDNum;
void main()
{
P2=~0x01;
while(1){
if(P3_1==0){
Delay(20);
while(P3_1==0);
Delay(20);
LEDNum++;
if(LEDNum>=8){
LEDNum=0;
}
P2=~(0x01<<LEDNum);
}
if(P3_0==0){
Delay(20);
while(P3_0==0);
Delay(20);
if(LEDNum==0){
LEDNum=7;
}else{
LEDNum--;
}
P2=~(0x01<<LEDNum);
}
}
}
void Delay(unsigned int xms)
{
unsigned char i, j;
while(xms--)
{
i = 2;
j = 239;
do
{
while (--j);
} while (--i);
}
}
1.7静态数码管显示
在某个位置显示数字
#include <REGX51.H>
#include <INTRINS.H>
unsigned char NixieTable[] ={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};
void Nixie(unsigned int Location,Num){
switch(Location){
case 1:P2_4=1;P2_3=1;P2_2=1;break;
case 2:P2_4=1;P2_3=1;P2_2=0;break;
case 3:P2_4=1;P2_3=0;P2_2=1;break;
case 4:P2_4=1;P2_3=0;P2_2=0;break;
case 5:P2_4=0;P2_3=1;P2_2=1;break;
case 6:P2_4=0;P2_3=1;P2_2=0;break;
case 7:P2_4=0;P2_3=0;P2_2=1;break;
case 8:P2_4=0;P2_3=0;P2_2=0;break;
}
P0=NixieTable[Num];
}
void main()
{
Nixie(7,0);
while(1){
}
}
1.8 动态数码管显示
循环显示数字
#include <REGX51.H>
#include <INTRINS.H>
unsigned char NixieTable[] ={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};
void Delay(unsigned int xms) //@12.000MHz
{
unsigned char data i, j;
while(xms--){
i = 2;
j = 239;
do
{
while (--j);
} while (--i);
}
}
void Nixie(unsigned int Location,Num){
switch(Location){
case 1:P2_4=1;P2_3=1;P2_2=1;break;
case 2:P2_4=1;P2_3=1;P2_2=0;break;
case 3:P2_4=1;P2_3=0;P2_2=1;break;
case 4:P2_4=1;P2_3=0;P2_2=0;break;
case 5:P2_4=0;P2_3=1;P2_2=1;break;
case 6:P2_4=0;P2_3=1;P2_2=0;break;
case 7:P2_4=0;P2_3=0;P2_2=1;break;
case 8:P2_4=0;P2_3=0;P2_2=0;break;
}
P0=NixieTable[Num];
}
void main()
{
while(1){
Nixie(1,1);
Delay(200);
Nixie(2,2);
Delay(200);
Nixie(3,3);
Delay(200);
}
}
模块化编程
传统方式编程:所有的函数均放在main.c里,若使用的模块比较多,则一个文件内会有很多的代码,不利于代码的组织和管理,而且很影响编程者的思路
模块化编程:把各个模块的代码放在不同的.c文件里,在.h文件里提供外部可调用函数的声明,其它.c文件想使用其中的代码时,只需要#include "XXX.h"文件即可。使用模块化编程可极大的提高代码的可阅读性、可维护性、可移植性等
函数体
头文件
.c文件:函数、变量的定义
.h文件:可被外部调用的函数、变量的声明
任何自定义的变量、函数在调用前必须有定义或声明(同一个.c)
使用到的自定义函数的.c文件必须添加到工程参与编译
使用到的.h文件必须要放在编译器可寻找到的地方(工程文件夹根目录、安装目录、自定义)
预编译
•C语言的预编译以#开头,作用是在真正的编译开始之前,对代码做一些处理(预编译)
预编译 | 意义 |
---|---|
#include <REGX52.H> | 把REGX52.H文件的内容搬到此处 |
#define PI 3.14 | 定义PI,将PI替换为3.14 |
#define ABC | 定义ABC |
#ifndef XX_H | 如果没有定义__XX_H__ |
#endif | 与#ifndef,#if匹配,组成“括号” |
•此外还有#ifdef,#if,#else,#elif,#undef等
LCD1602调试工具
使用LCD1602液晶屏作为调试窗口,提供类似printf函数的功能,可实时观察单片机内部数据的变换情况,便于调试和演示。
本视频提供的LCD1602代码属于模块化的代码,使用者只需要知道所提供函数的作用和使用方法就可以很容易的使用LCD1602
函数 | 作用 |
---|---|
LCD_Init(); | 初始化 |
LCD_ShowChar(1,1,'A'); | 显示一个字符 |
LCD_ShowString(1,3,"Hello"); | 显示字符串 |
LCD_ShowNum(1,9,123,3); | 显示十进制数字 |
LCD_ShowSignedNum(1,13,-66,2); | 显示有符号十进制数字 |
LCD_ShowHexNum(2,1,0xA8,2); | 显示十六进制数字 |
LCD_ShowBinNum(2,4,0xAA,8); | 显示二进制数字 |
LCD1602.c
#include <REGX52.H>
//引脚配置:
sbit LCD_RS=P2^6;
sbit LCD_RW=P2^5;
sbit LCD_EN=P2^7;
#define LCD_DataPort P0
//函数定义:
/**
* @brief LCD1602延时函数,12MHz调用可延时1ms
* @param 无
* @retval 无
*/
void LCD_Delay()
{
unsigned char i, j;
i = 2;
j = 239;
do
{
while (--j);
} while (--i);
}
/**
* @brief LCD1602写命令
* @param Command 要写入的命令
* @retval 无
*/
void LCD_WriteCommand(unsigned char Command)
{
LCD_RS=0;
LCD_RW=0;
LCD_DataPort=Command;
LCD_EN=1;
LCD_Delay();
LCD_EN=0;
LCD_Delay();
}
/**
* @brief LCD1602写数据
* @param Data 要写入的数据
* @retval 无
*/
void LCD_WriteData(unsigned char Data)
{
LCD_RS=1;
LCD_RW=0;
LCD_DataPort=Data;
LCD_EN=1;
LCD_Delay();
LCD_EN=0;
LCD_Delay();
}
/**
* @brief LCD1602设置光标位置
* @param Line 行位置,范围:1~2
* @param Column 列位置,范围:1~16
* @retval 无
*/
void LCD_SetCursor(unsigned char Line,unsigned char Column)
{
if(Line==1)
{
LCD_WriteCommand(0x80|(Column-1));
}
else if(Line==2)
{
LCD_WriteCommand(0x80|(Column-1+0x40));
}
}
/**
* @brief LCD1602初始化函数
* @param 无
* @retval 无
*/
void LCD_Init()
{
LCD_WriteCommand(0x38);//八位数据接口,两行显示,5*7点阵
LCD_WriteCommand(0x0c);//显示开,光标关,闪烁关
LCD_WriteCommand(0x06);//数据读写操作后,光标自动加一,画面不动
LCD_WriteCommand(0x01);//光标复位,清屏
}
/**
* @brief 在LCD1602指定位置上显示一个字符
* @param Line 行位置,范围:1~2
* @param Column 列位置,范围:1~16
* @param Char 要显示的字符
* @retval 无
*/
void LCD_ShowChar(unsigned char Line,unsigned char Column,char Char)
{
LCD_SetCursor(Line,Column);
LCD_WriteData(Char);
}
/**
* @brief 在LCD1602指定位置开始显示所给字符串
* @param Line 起始行位置,范围:1~2
* @param Column 起始列位置,范围:1~16
* @param String 要显示的字符串
* @retval 无
*/
void LCD_ShowString(unsigned char Line,unsigned char Column,char *String)
{
unsigned char i;
LCD_SetCursor(Line,Column);
for(i=0;String[i]!='\0';i++)
{
LCD_WriteData(String[i]);
}
}
/**
* @brief 返回值=X的Y次方
*/
int LCD_Pow(int X,int Y)
{
unsigned char i;
int Result=1;
for(i=0;i<Y;i++)
{
Result*=X;
}
return Result;
}
/**
* @brief 在LCD1602指定位置开始显示所给数字
* @param Line 起始行位置,范围:1~2
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:0~65535
* @param Length 要显示数字的长度,范围:1~5
* @retval 无
*/
void LCD_ShowNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length)
{
unsigned char i;
LCD_SetCursor(Line,Column);
for(i=Length;i>0;i--)
{
LCD_WriteData(Number/LCD_Pow(10,i-1)%10+'0');
}
}
/**
* @brief 在LCD1602指定位置开始以有符号十进制显示所给数字
* @param Line 起始行位置,范围:1~2
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:-32768~32767
* @param Length 要显示数字的长度,范围:1~5
* @retval 无
*/
void LCD_ShowSignedNum(unsigned char Line,unsigned char Column,int Number,unsigned char Length)
{
unsigned char i;
unsigned int Number1;
LCD_SetCursor(Line,Column);
if(Number>=0)
{
LCD_WriteData('+');
Number1=Number;
}
else
{
LCD_WriteData('-');
Number1=-Number;
}
for(i=Length;i>0;i--)
{
LCD_WriteData(Number1/LCD_Pow(10,i-1)%10+'0');
}
}
/**
* @brief 在LCD1602指定位置开始以十六进制显示所给数字
* @param Line 起始行位置,范围:1~2
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:0~0xFFFF
* @param Length 要显示数字的长度,范围:1~4
* @retval 无
*/
void LCD_ShowHexNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length)
{
unsigned char i,SingleNumber;
LCD_SetCursor(Line,Column);
for(i=Length;i>0;i--)
{
SingleNumber=Number/LCD_Pow(16,i-1)%16;
if(SingleNumber<10)
{
LCD_WriteData(SingleNumber+'0');
}
else
{
LCD_WriteData(SingleNumber-10+'A');
}
}
}
/**
* @brief 在LCD1602指定位置开始以二进制显示所给数字
* @param Line 起始行位置,范围:1~2
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:0~1111 1111 1111 1111
* @param Length 要显示数字的长度,范围:1~16
* @retval 无
*/
void LCD_ShowBinNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length)
{
unsigned char i;
LCD_SetCursor(Line,Column);
for(i=Length;i>0;i--)
{
LCD_WriteData(Number/LCD_Pow(2,i-1)%2+'0');
}
}
LCD1602_H
#ifndef __LCD1602_H__
#define __LCD1602_H__
//用户调用函数:
void LCD_Init();
void LCD_ShowChar(unsigned char Line,unsigned char Column,char Char);
void LCD_ShowString(unsigned char Line,unsigned char Column,char *String);
void LCD_ShowNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length);
void LCD_ShowSignedNum(unsigned char Line,unsigned char Column,int Number,unsigned char Length);
void LCD_ShowHexNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length);
void LCD_ShowBinNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length);
#endif
矩阵键盘
在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式
采用逐行或逐列的“扫描”,就可以读出任何位置按键的状态
MatrixKey.c
#include <REGX52.H>
#include "Delay.h"
/**
* @brief 矩阵键盘读取按键键码
* @param 无
* @retval KeyNumber 按下按键的键码值
如果按键按下不放,程序会停留在此函数,松手的一瞬间,返回按键键码,没有按键按下时,返回0
*/
unsigned char MatrixKey()
{
unsigned char KeyNumber=0;
P1=0xFF;
P1_3=0;
if(P1_7==0){Delay(20);while(P1_7==0);Delay(20);KeyNumber=1;}
if(P1_6==0){Delay(20);while(P1_6==0);Delay(20);KeyNumber=5;}
if(P1_5==0){Delay(20);while(P1_5==0);Delay(20);KeyNumber=9;}
if(P1_4==0){Delay(20);while(P1_4==0);Delay(20);KeyNumber=13;}
P1=0xFF;
P1_2=0;
if(P1_7==0){Delay(20);while(P1_7==0);Delay(20);KeyNumber=2;}
if(P1_6==0){Delay(20);while(P1_6==0);Delay(20);KeyNumber=6;}
if(P1_5==0){Delay(20);while(P1_5==0);Delay(20);KeyNumber=10;}
if(P1_4==0){Delay(20);while(P1_4==0);Delay(20);KeyNumber=14;}
P1=0xFF;
P1_1=0;
if(P1_7==0){Delay(20);while(P1_7==0);Delay(20);KeyNumber=3;}
if(P1_6==0){Delay(20);while(P1_6==0);Delay(20);KeyNumber=7;}
if(P1_5==0){Delay(20);while(P1_5==0);Delay(20);KeyNumber=11;}
if(P1_4==0){Delay(20);while(P1_4==0);Delay(20);KeyNumber=15;}
P1=0xFF;
P1_0=0;
if(P1_7==0){Delay(20);while(P1_7==0);Delay(20);KeyNumber=4;}
if(P1_6==0){Delay(20);while(P1_6==0);Delay(20);KeyNumber=8;}
if(P1_5==0){Delay(20);while(P1_5==0);Delay(20);KeyNumber=12;}
if(P1_4==0){Delay(20);while(P1_4==0);Delay(20);KeyNumber=16;}
return KeyNumber;
}
MatrixKey.h
#ifndef __MATRIXKEY_H__
#define __MATRIXKEY_H__
unsigned char MatrixKey();
#endif
main.c
#include <REGX52.H>
#include "Delay.h" //包含Delay头文件
#include "LCD1602.h" //包含LCD1602头文件
#include "MatrixKey.h" //包含矩阵键盘头文件
unsigned char KeyNum;
void main()
{
LCD_Init(); //LCD初始化
LCD_ShowString(1,1,"MatrixKey:"); //LCD显示字符串
while(1)
{
KeyNum=MatrixKey(); //获取矩阵键盘键码
if(KeyNum) //如果有按键按下
{
LCD_ShowNum(2,1,KeyNum,2); //LCD显示键码
}
}
}
密码锁
#include <REGX52.H>
#include "Delay.h" //包含Delay头文件
#include "LCD1602.h" //包含LCD1602头文件
#include "MatrixKey.h" //包含矩阵键盘头文件
unsigned char KeyNum;
void main()
{
LCD_Init(); //LCD初始化
LCD_ShowString(1,1,"MatrixKey:"); //LCD显示字符串
while(1)
{
KeyNum=MatrixKey(); //获取矩阵键盘键码
if(KeyNum) //如果有按键按下
{
LCD_ShowNum(2,1,KeyNum,2); //LCD显示键码
}
}
}
按键控制LED流水灯
Timer0.c
#include <REGX52.H>
/**
* @brief 定时器0初始化,1毫秒@12.000MHz
* @param 无
* @retval 无
*/
void Timer0Init(void)
{
TMOD &= 0xF0; //设置定时器模式
TMOD |= 0x01; //设置定时器模式
TL0 = 0x18; //设置定时初值
TH0 = 0xFC; //设置定时初值
TF0 = 0; //清除TF0标志
TR0 = 1; //定时器0开始计时
ET0=1;
EA=1;
PT0=0;
}
/*定时器中断函数模板
void Timer0_Routine() interrupt 1
{
static unsigned int T0Count;
TL0 = 0x18; //设置定时初值
TH0 = 0xFC; //设置定时初值
T0Count++;
if(T0Count>=1000)
{
T0Count=0;
}
}
*/
Timer0.h
#ifndef __TIMER0_H__
#define __TIMER0_H__
void Timer0Init(void);
#endif
main.c
#include <REGX52.H>
#include "Timer0.h"
#include "Key.h"
#include <INTRINS.H>
unsigned char KeyNum,LEDMode;
void main()
{
P2=0xFE;
Timer0Init();
while(1)
{
KeyNum=Key(); //获取独立按键键码
if(KeyNum) //如果按键按下
{
if(KeyNum==1) //如果K1按键按下
{
LEDMode++; //模式切换
if(LEDMode>=2)LEDMode=0;
}
}
}
}
void Timer0_Routine() interrupt 1
{
static unsigned int T0Count;
TL0 = 0x18; //设置定时初值
TH0 = 0xFC; //设置定时初值
T0Count++; //T0Count计次,对中断频率进行分频
if(T0Count>=500)//分频500次,500ms
{
T0Count=0;
if(LEDMode==0) //模式判断
P2=_crol_(P2,1); //LED输出
if(LEDMode==1)
P2=_cror_(P2,1);
}
}
扫描
数码管扫描(输出扫描)
原理:显示第1位→显示第2位→显示第3位→……,然后快速循环这个过程,最终实现所有数码管同时显示的效果
矩阵键盘扫描(输入扫描)
原理:读取第1行(列)→读取第2行(列) →读取第3行(列) → ……,然后快速循环这个过程,最终实现所有按键同时检测的效果
以上两种扫描方式的共性:节省I/O口
定时器
定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成
定时器作用:
(1)用于计时系统,可实现软件计时,或者使程序每隔一固定时间完成一项操作
(2)替代长时间的Delay,提高CPU的运行效率和处理速度
(…)
定时器个数:3个(T0、T1、T2),T0和T1与传统的51单片机兼容,T2是此型号单片机增加的资源
注意:定时器的资源和单片机的型号是关联在一起的,不同的型号可能会有不同的定时器个数和操作方式,但一般来说,T0和T1的操作方式是所有51单片机所共有的
定时器时钟
main.c
#include <REGX52.H>
#include "Delay.h"
#include "LCD1602.h"
#include "Timer0.h"
unsigned char Sec=55,Min=59,Hour=23;
void main()
{
LCD_Init();
Timer0Init();
LCD_ShowString(1,1,"Clock:"); //上电显示静态字符串
LCD_ShowString(2,1," : :");
while(1)
{
LCD_ShowNum(2,1,Hour,2); //显示时分秒
LCD_ShowNum(2,4,Min,2);
LCD_ShowNum(2,7,Sec,2);
}
}
void Timer0_Routine() interrupt 1
{
static unsigned int T0Count;
TL0 = 0x18; //设置定时初值
TH0 = 0xFC; //设置定时初值
T0Count++;
if(T0Count>=1000) //定时器分频,1s
{
T0Count=0;
Sec++; //1秒到,Sec自增
if(Sec>=60)
{
Sec=0; //60秒到,Sec清0,Min自增
Min++;
if(Min>=60)
{
Min=0; //60分钟到,Min清0,Hour自增
Hour++;
if(Hour>=24)
{
Hour=0; //24小时到,Hour清0
}
}
}
}
}
定时器在单片机内部就像一个小闹钟一样,根据时钟的输出信号,每隔“一秒”,计数单元的数值就增加一,当计数单元数值增加到“设定的闹钟提醒时间”时,计数单元就会向中断系统发出中断申请,产生“响铃提醒”,使程序跳转到中断服务函数中执行
流程图
STC89C52的T0和T1均有四种工作模式:
模式0:13位定时器/计数器
模式1:16位定时器/计数器(常用)
模式2:8位自动重装模式
模式3:两个8位计数器
工作模式1框图:
•SYSclk:系统时钟,即晶振周期,本开发板上的晶振为12MHz
中断系统
STC89C52中断资源
中断触发
中断寄存器
中断源个数:8个(外部中断0、定时器0中断、外部中断1、定时器1中断、串口中断、定时器2中断、外部中断2、外部中断3)
中断优先级个数:4个
中断号:
注意:中断的资源和单片机的型号是关联在一起的,不同的型号可能会有不同的中断资源,例如中断源个数不同、中断优先级个数不同等等
•寄存器是连接软硬件的媒介
•在单片机中寄存器就是一段特殊的RAM存储器,一方面,寄存器可以存储和读取数据,另一方面,每一个寄存器背后都连接了一根导线,控制着电路的连接方式
•寄存器相当于一个复杂机器的“操作按钮”
串口
串口是一种应用十分广泛的通讯接口,串口成本低、容易使用、通信线路简单,可实现两个设备的互相通信。
单片机的串口可以使单片机与单片机、单片机与电脑、单片机与各式各样的模块互相通信,极大的扩展了单片机的应用范围,增强了单片机系统的硬件实力。
51单片机内部自带UART(Universal Asynchronous Receiver Transmitter,通用异步收发器),可实现单片机的串口通信。
硬件电路
简单双向串口通信有两根通信线(发送端TXD和接收端RXD)
TXD与RXD要交叉连接
当只需单向的数据传输时,可以直接一根通信线
当电平标准不一致时,需要加电平转换芯片
电平标准
电平标准是数据1和数据0的表达方式,是传输线缆中人为规定的电压与数据的对应关系,串口常用的电平标准有如下三种:
TTL电平:+5V表示1,0V表示0
RS232电平:-3~-15V表示1,+3~+15V表示0
RS485电平:两线压差+2~+6V表示1,-2~-6V表示0(差分信号)
常用通信接口
名称 | 引脚定义 | 通信方式 | 特点 |
---|---|---|---|
UART | TXD、RXD | 全双工、异步 | 点对点通信 |
I²C | SCL、SDA | 半双工、同步 | 可挂载多个设备 |
SPI | SCLK、MOSI、MISO、CS | 全双工、同步 | 可挂载多个设备 |
1-Wire | DQ | 半双工、异步 | 可挂载多个设备 |
全双工:通信双方可以在同一时刻互相传输数据
半双工:通信双方可以互相传输数据,但必须分时复用一根数据线
单工:通信只能有一方发送到另一方,不能反向传输
异步:通信双方各自约定通信速率
同步:通信双方靠一根时钟线来约定通信速率
总线:连接各个设备的数据传输线路(类似于一条马路,把路边各住户连接起来,使住户可以相互交流)
51单片机的UART
STC89C52有1个UART
STC89C52的UART有四种工作模式:
模式0:同步移位寄存器
模式1:8位UART,波特率可变(常用)
模式2:9位UART,波特率固定
模式3:9位UART,波特率可变
波特率:串口通信的速率(发送和接收各数据位的间隔时间)
检验位:用于数据验证
停止位:用于数据帧间隔
串口模式
SBUF:串口数据缓存寄存器,物理上是两个独立的寄存器,但占用相同的地址。写操作时,写入的是发送寄存器,读操作时,读出的是接收寄存器
串口相关寄存器
•HEX模式/十六进制模式/二进制模式:以原始数据的形式显示
•文本模式/字符模式:以原始数据编码后的形式显示
串口向电脑发送数据
UART.c
#include <REGX52.H>
/**
* @brief 串口初始化,[email protected]
* @param 无
* @retval 无
*/
void UART_Init()
{
SCON=0x40;
PCON |= 0x80;
TMOD &= 0x0F; //设置定时器模式
TMOD |= 0x20; //设置定时器模式
TL1 = 0xF3; //设定定时初值
TH1 = 0xF3; //设定定时器重装值
ET1 = 0; //禁止定时器1中断
TR1 = 1; //启动定时器1
}
/**
* @brief 串口发送一个字节数据
* @param Byte 要发送的一个字节数据
* @retval 无
*/
void UART_SendByte(unsigned char Byte)
{
SBUF=Byte;
while(TI==0);
TI=0;
}
UART.h
#ifndef __UART_H__
#define __UART_H__
void UART_Init();
void UART_SendByte(unsigned char Byte);
#endif
main.c
#include <REGX52.H>
#include "Delay.h"
#include "UART.h"
unsigned char Sec;
void main()
{
UART_Init(); //串口初始化
while(1)
{
UART_SendByte(Sec); //串口发送一个字节
Sec++; //Sec自增
Delay(1000); //延时1秒
}
}
LED点阵屏介绍
LED点阵屏由若干个独立的LED组成,LED以矩阵的形式排列,以灯珠亮灭来显示文字、图片、视频等。LED点阵屏广泛应用于各种公共场合,如汽车报站器、广告屏以及公告牌等
LED点阵屏分类
按颜色:单色、双色、全彩
按像素:8*8、16*16等(大规模的LED点阵通常由很多个小点阵拼接而成)
LED点阵屏的结构类似于数码管,只不过是数码管把每一列的像素以“8”字型排列而已
LED点阵屏与数码管一样,有共阴和共阳两种接法,不同的接法对应的电路结构不同
LED点阵屏需要进行逐行或逐列扫描,才能使所有LED同时显示
74HC595
74HC595是串行输入并行输出的移位寄存器,可用3根线输入串行数据,8根线输出并行数据,多片级联后,可输出16位、24位、32位等,常用于IO口扩展。
开发板引脚
C51的sfr、sbit
sfr(special function register):特殊功能寄存器声明
例:sfr P0 = 0x80;
声明P0口寄存器,物理地址为0x80
sbit(special bit):特殊位声明
例:sbit P0_1 = 0x81; 或 sbit P0_1 = P0^1;
声明P0寄存器的第1位
可位寻址/不可位寻址:在单片机系统中,操作任意寄存器或者某一位的数据时,必须给出其物理地址,又因为一个寄存器里有8位,所以位的数量是寄存器数量的8倍,单片机无法对所有位进行编码,故每8个寄存器中,只有一个是可以位寻址的。对不可位寻址的寄存器,若要只操作其中一位而不影响其它位时,可用“&=”、“|=”、“^=”的方法进行位操作
8 位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。三态。
特点
8 位串行输入
8 位串行或并行输出
存储状态寄存器,三种状态
输出寄存器可以直接清除
100MHz 的移位频率
输出能力
并行输出,总线驱动
串行输出;标准
中等规模集成电路
应用
串行到并行的数据转换
Remote control holding register.
描述
595 是告诉的硅结构的 CMOS 器件,
兼容低电压 TTL 电路,遵守 JEDEC 标准。
595 是具有 8 位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在 SCHcp 的上升沿输入,在 STcp 的上升沿进入的存储寄存器中去。如
果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一
个异步的低电平复位,存储寄存器有一个并行 8 位的,具备三态的总线输出,当
使能 OE 时(为低电平),存储寄存器的数据输出到总线。
引脚
74595 的控制端说明:
/SCLR(10 脚): 低点平时将移位寄存器的数据清零。通常我将它接 Vcc。
SCK(11 脚):上升沿时数据寄存器的数据移位。 QA-->QB-->QC-->...-->QH;下
降沿移位寄存器数据不变。(脉冲宽度: 5V 时,大于几十纳秒就行了。)
RCK(12 脚):上升沿时移位寄存器的数据进入数据存储寄存器,下降沿时存储寄
存器数据不变。通常我将 RCK 置为低点平,当移位结束后,在 RCK 端产生一
个正脉冲( 5V 时,大于几十纳秒就行了。我通常都选微秒级),更新显示数据。
/G(13 脚): 高电平时禁止输出(高阻态)。如果单片机的引脚不紧张,用一个引
脚控制它,可以方便地产生闪烁和熄灭效果。比通过数据端移位控制要省时省力。
注: 74164 和 74595 功能相仿,都是 8 位串行输入转并行输出移位寄存器。 74164
的驱动电流(25mA)比 74595(35mA)的要小,14 脚封装,体积也小一些。
74595 的主要优点是具有数据存储寄存器,在移位的过程中,输出端的数据可以
保持不变。这在串行速度慢的场合很有用处,数码管没有闪烁感。
与 164 只有数据清零端相比, 595 还多有输出端时能/禁止控制端,可以使输出为
高阻态。
另外,据网上报价,贴片 164 每只 1 元钱,贴片 595 0.8 元/只。
74HC595 是具有 8 位移位寄存器和一个存储器,三态输出功能。 移位寄存
器和存储器是分别的时钟。数据在 SCHcp 的上升沿输入,在 STcp 的上升沿进入
的存储寄存器中去。如果两个时钟连在一起,则移位寄存器总是比存储寄存器早
一个脉冲。移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),
和一个异步的低电平复位,存储寄存器有一个并行 8 位的,具备三态的总线输
出,当使能 OE 时(为低电平),存储寄存器的数据输出到总线。
程序说明:
每当 spi_shcp 上升沿到来时,spi_ds 引脚当前电平值在移位寄存器中左移
一位,在下一个上升沿到来时移位寄存器中的所有位都会向左移一位,
同时 Q7'也会串行输出移位寄存器中高位的值,
这样连续进行 8 次,就可以把数组中每一个数(8 位的数)送到移位寄存器;
然后当 spi_stcp 上升沿到来时,移位寄存器的值将会被锁存到锁存器里,
并从 Q1~7 引脚输出
LED点阵屏显示动画
#include <REGX52.H>
#include "Delay.h"
sbit RCK=P3^5; //RCLK
sbit SCK=P3^6; //SRCLK
sbit SER=P3^4; //SER
#define MATRIX_LED_PORT P0
/**
* @brief 74HC595写入一个字节
* @param Byte 要写入的字节
* @retval 无
*/
void _74HC595_WriteByte(unsigned char Byte)
{
unsigned char i;
for(i=0;i<8;i++)
{
SER=Byte&(0x80>>i);
SCK=1;
SCK=0;
}
RCK=1;
RCK=0;
}
/**
* @brief 点阵屏初始化
* @param 无
* @retval 无
*/
void MatrixLED_Init()
{
SCK=0;
RCK=0;
}
/**
* @brief LED点阵屏显示一列数据
* @param Column 要选择的列,范围:0~7,0在最左边
* @param Data 选择列显示的数据,高位在上,1为亮,0为灭
* @retval 无
*/
void MatrixLED_ShowColumn(unsigned char Column,Data)
{
_74HC595_WriteByte(Data);
MATRIX_LED_PORT=~(0x80>>Column);
Delay(1);
MATRIX_LED_PORT=0xFF;
}
#ifndef __MATRIX_LED_H__
#define __MATRIX_LED_H__
void MatrixLED_Init();
void MatrixLED_ShowColumn(unsigned char Column,Data);
#endif
main.c
#include <REGX52.H>
#include "Delay.h"
#include "MatrixLED.h"
//动画数据
unsigned char code Animation[]={
0x3C,0x42,0xA9,0x85,0x85,0xA9,0x42,0x3C,
0x3C,0x42,0xA1,0x85,0x85,0xA1,0x42,0x3C,
0x3C,0x42,0xA5,0x89,0x89,0xA5,0x42,0x3C,
};
void main()
{
unsigned char i,Offset=0,Count=0;
MatrixLED_Init();
while(1)
{
for(i=0;i<8;i++) //循环8次,显示8列数据
{
MatrixLED_ShowColumn(i,Animation[i+Offset]);
}
Count++; //计次延时
if(Count>15)
{
Count=0;
Offset+=8; //偏移+8,切换下一帧画面
if(Offset>16)
{
Offset=0;
}
}
}
}
DS1302介绍
DS1302是由美国DALLAS公司推出的具有涓细电流充电能力的低功耗实时时钟芯片。它可以对年、月、日、周、时、分、秒进行计时,且具有闰年补偿等多种功能
RTC(Real Time Clock):实时时钟,是一种集成电路,通常称为时钟芯片
引脚名 | 作用 | 引脚名 | 作用 |
---|---|---|---|
VCC2 | 主电源 | CE | 芯片使能 |
VCC1 | 备用电池 | IO | 数据输入/输出 |
GND | 电源地 | SCLK | 串行时钟 |
X1、X2 | 32.768KHz晶振 |
寄存器定义
BCD码(Binary Coded Decimal),用4位二进制数来表示1位十进制数
例:0001 0011表示13,1000 0101表示85,0001 1010不合法
在十六进制中的体现:0x13表示13,0x85表示85,0x1A不合法
BCD码转十进制:DEC=BCD/16*10+BCD%16; (2位BCD)
十进制转BCD码:BCD=DEC/10*16+DEC%10; (2位BCD)
DS1302 定时时钟
DS1302.C
#include <REGX52.H>
//引脚定义
sbit DS1302_SCLK=P3^6;
sbit DS1302_IO=P3^4;
sbit DS1302_CE=P3^5;
//寄存器写入地址/指令定义
#define DS1302_SECOND 0x80
#define DS1302_MINUTE 0x82
#define DS1302_HOUR 0x84
#define DS1302_DATE 0x86
#define DS1302_MONTH 0x88
#define DS1302_DAY 0x8A
#define DS1302_YEAR 0x8C
#define DS1302_WP 0x8E
//时间数组,索引0~6分别为年、月、日、时、分、秒、星期
unsigned char DS1302_Time[]={19,11,16,12,59,55,6};
/**
* @brief DS1302初始化
* @param 无
* @retval 无
*/
void DS1302_Init(void)
{
DS1302_CE=0;
DS1302_SCLK=0;
}
/**
* @brief DS1302写一个字节
* @param Command 命令字/地址
* @param Data 要写入的数据
* @retval 无
*/
void DS1302_WriteByte(unsigned char Command,Data)
{
unsigned char i;
DS1302_CE=1;
for(i=0;i<8;i++)
{
DS1302_IO=Command&(0x01<<i);
DS1302_SCLK=1;
DS1302_SCLK=0;
}
for(i=0;i<8;i++)
{
DS1302_IO=Data&(0x01<<i);
DS1302_SCLK=1;
DS1302_SCLK=0;
}
DS1302_CE=0;
}
/**
* @brief DS1302读一个字节
* @param Command 命令字/地址
* @retval 读出的数据
*/
unsigned char DS1302_ReadByte(unsigned char Command)
{
unsigned char i,Data=0x00;
Command|=0x01; //将指令转换为读指令
DS1302_CE=1;
for(i=0;i<8;i++)
{
DS1302_IO=Command&(0x01<<i);
DS1302_SCLK=0;
DS1302_SCLK=1;
}
for(i=0;i<8;i++)
{
DS1302_SCLK=1;
DS1302_SCLK=0;
if(DS1302_IO){Data|=(0x01<<i);}
}
DS1302_CE=0;
DS1302_IO=0; //读取后将IO设置为0,否则读出的数据会出错
return Data;
}
/**
* @brief DS1302设置时间,调用之后,DS1302_Time数组的数字会被设置到DS1302中
* @param 无
* @retval 无
*/
void DS1302_SetTime(void)
{
DS1302_WriteByte(DS1302_WP,0x00);
DS1302_WriteByte(DS1302_YEAR,DS1302_Time[0]/10*16+DS1302_Time[0]%10);//十进制转BCD码后写入
DS1302_WriteByte(DS1302_MONTH,DS1302_Time[1]/10*16+DS1302_Time[1]%10);
DS1302_WriteByte(DS1302_DATE,DS1302_Time[2]/10*16+DS1302_Time[2]%10);
DS1302_WriteByte(DS1302_HOUR,DS1302_Time[3]/10*16+DS1302_Time[3]%10);
DS1302_WriteByte(DS1302_MINUTE,DS1302_Time[4]/10*16+DS1302_Time[4]%10);
DS1302_WriteByte(DS1302_SECOND,DS1302_Time[5]/10*16+DS1302_Time[5]%10);
DS1302_WriteByte(DS1302_DAY,DS1302_Time[6]/10*16+DS1302_Time[6]%10);
DS1302_WriteByte(DS1302_WP,0x80);
}
/**
* @brief DS1302读取时间,调用之后,DS1302中的数据会被读取到DS1302_Time数组中
* @param 无
* @retval 无
*/
void DS1302_ReadTime(void)
{
unsigned char Temp;
Temp=DS1302_ReadByte(DS1302_YEAR);
DS1302_Time[0]=Temp/16*10+Temp%16;//BCD码转十进制后读取
Temp=DS1302_ReadByte(DS1302_MONTH);
DS1302_Time[1]=Temp/16*10+Temp%16;
Temp=DS1302_ReadByte(DS1302_DATE);
DS1302_Time[2]=Temp/16*10+Temp%16;
Temp=DS1302_ReadByte(DS1302_HOUR);
DS1302_Time[3]=Temp/16*10+Temp%16;
Temp=DS1302_ReadByte(DS1302_MINUTE);
DS1302_Time[4]=Temp/16*10+Temp%16;
Temp=DS1302_ReadByte(DS1302_SECOND);
DS1302_Time[5]=Temp/16*10+Temp%16;
Temp=DS1302_ReadByte(DS1302_DAY);
DS1302_Time[6]=Temp/16*10+Temp%16;
}
main.c
#include <REGX52.H>
#include "LCD1602.h"
#include "DS1302.h"
void main()
{
LCD_Init();
DS1302_Init();
LCD_ShowString(1,1," - - ");//静态字符初始化显示
LCD_ShowString(2,1," : : ");
DS1302_SetTime();//设置时间
while(1)
{
DS1302_ReadTime();//读取时间
LCD_ShowNum(1,1,DS1302_Time[0],2);//显示年
LCD_ShowNum(1,4,DS1302_Time[1],2);//显示月
LCD_ShowNum(1,7,DS1302_Time[2],2);//显示日
LCD_ShowNum(2,1,DS1302_Time[3],2);//显示时
LCD_ShowNum(2,4,DS1302_Time[4],2);//显示分
LCD_ShowNum(2,7,DS1302_Time[5],2);//显示秒
}
}
可调时钟
按键KEY
#include <REGX52.H>
#include "Delay.h"
/**
* @brief 获取独立按键键码
* @param 无
* @retval 按下按键的键码,范围:0~4,无按键按下时返回值为0
*/
unsigned char Key()
{
unsigned char KeyNumber=0;
if(P3_1==0){Delay(20);while(P3_1==0);Delay(20);KeyNumber=1;}
if(P3_0==0){Delay(20);while(P3_0==0);Delay(20);KeyNumber=2;}
if(P3_2==0){Delay(20);while(P3_2==0);Delay(20);KeyNumber=3;}
if(P3_3==0){Delay(20);while(P3_3==0);Delay(20);KeyNumber=4;}
return KeyNumber;
}
#include <REGX52.H>
//引脚定义
sbit DS1302_SCLK=P3^6;
sbit DS1302_IO=P3^4;
sbit DS1302_CE=P3^5;
//寄存器写入地址/指令定义
#define DS1302_SECOND 0x80
#define DS1302_MINUTE 0x82
#define DS1302_HOUR 0x84
#define DS1302_DATE 0x86
#define DS1302_MONTH 0x88
#define DS1302_DAY 0x8A
#define DS1302_YEAR 0x8C
#define DS1302_WP 0x8E
//时间数组,索引0~6分别为年、月、日、时、分、秒、星期,设置为有符号的便于<0的判断
char DS1302_Time[]={19,11,16,12,59,55,6};
/**
* @brief DS1302初始化
* @param 无
* @retval 无
*/
void DS1302_Init(void)
{
DS1302_CE=0;
DS1302_SCLK=0;
}
/**
* @brief DS1302写一个字节
* @param Command 命令字/地址
* @param Data 要写入的数据
* @retval 无
*/
void DS1302_WriteByte(unsigned char Command,Data)
{
unsigned char i;
DS1302_CE=1;
for(i=0;i<8;i++)
{
DS1302_IO=Command&(0x01<<i);
DS1302_SCLK=1;
DS1302_SCLK=0;
}
for(i=0;i<8;i++)
{
DS1302_IO=Data&(0x01<<i);
DS1302_SCLK=1;
DS1302_SCLK=0;
}
DS1302_CE=0;
}
/**
* @brief DS1302读一个字节
* @param Command 命令字/地址
* @retval 读出的数据
*/
unsigned char DS1302_ReadByte(unsigned char Command)
{
unsigned char i,Data=0x00;
Command|=0x01; //将指令转换为读指令
DS1302_CE=1;
for(i=0;i<8;i++)
{
DS1302_IO=Command&(0x01<<i);
DS1302_SCLK=0;
DS1302_SCLK=1;
}
for(i=0;i<8;i++)
{
DS1302_SCLK=1;
DS1302_SCLK=0;
if(DS1302_IO){Data|=(0x01<<i);}
}
DS1302_CE=0;
DS1302_IO=0; //读取后将IO设置为0,否则读出的数据会出错
return Data;
}
/**
* @brief DS1302设置时间,调用之后,DS1302_Time数组的数字会被设置到DS1302中
* @param 无
* @retval 无
*/
void DS1302_SetTime(void)
{
DS1302_WriteByte(DS1302_WP,0x00);
DS1302_WriteByte(DS1302_YEAR,DS1302_Time[0]/10*16+DS1302_Time[0]%10);//十进制转BCD码后写入
DS1302_WriteByte(DS1302_MONTH,DS1302_Time[1]/10*16+DS1302_Time[1]%10);
DS1302_WriteByte(DS1302_DATE,DS1302_Time[2]/10*16+DS1302_Time[2]%10);
DS1302_WriteByte(DS1302_HOUR,DS1302_Time[3]/10*16+DS1302_Time[3]%10);
DS1302_WriteByte(DS1302_MINUTE,DS1302_Time[4]/10*16+DS1302_Time[4]%10);
DS1302_WriteByte(DS1302_SECOND,DS1302_Time[5]/10*16+DS1302_Time[5]%10);
DS1302_WriteByte(DS1302_DAY,DS1302_Time[6]/10*16+DS1302_Time[6]%10);
DS1302_WriteByte(DS1302_WP,0x80);
}
/**
* @brief DS1302读取时间,调用之后,DS1302中的数据会被读取到DS1302_Time数组中
* @param 无
* @retval 无
*/
void DS1302_ReadTime(void)
{
unsigned char Temp;
Temp=DS1302_ReadByte(DS1302_YEAR);
DS1302_Time[0]=Temp/16*10+Temp%16;//BCD码转十进制后读取
Temp=DS1302_ReadByte(DS1302_MONTH);
DS1302_Time[1]=Temp/16*10+Temp%16;
Temp=DS1302_ReadByte(DS1302_DATE);
DS1302_Time[2]=Temp/16*10+Temp%16;
Temp=DS1302_ReadByte(DS1302_HOUR);
DS1302_Time[3]=Temp/16*10+Temp%16;
Temp=DS1302_ReadByte(DS1302_MINUTE);
DS1302_Time[4]=Temp/16*10+Temp%16;
Temp=DS1302_ReadByte(DS1302_SECOND);
DS1302_Time[5]=Temp/16*10+Temp%16;
Temp=DS1302_ReadByte(DS1302_DAY);
DS1302_Time[6]=Temp/16*10+Temp%16;
}
蜂鸣器
介绍
•蜂鸣器是一种将电信号转换为声音信号的器件,常用来产生设备的按键音、报警音等提示信号
•蜂鸣器按驱动方式可分为有源蜂鸣器和无源蜂鸣器
•有源蜂鸣器:内部自带振荡源,将正负极接上直流电压即可持续发声,频率固定
•无源蜂鸣器:内部不带振荡源,需要控制器提供振荡脉冲才可发声,调整提供振荡脉冲的频率,可发出不同频率的声音
三极管驱动
蜂鸣器电路图
数码管
#include <REGX52.H>
#include "Delay.h"
//数码管段码表
unsigned char NixieTable[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};
/**
* @brief 数码管显示
* @param Location 要显示的位置,范围:1~8
* @param Number 要显示的数字,范围:段码表索引范围
* @retval 无
*/
void Nixie(unsigned char Location,Number)
{
switch(Location) //位码输出
{
case 1:P2_4=1;P2_3=1;P2_2=1;break;
case 2:P2_4=1;P2_3=1;P2_2=0;break;
case 3:P2_4=1;P2_3=0;P2_2=1;break;
case 4:P2_4=1;P2_3=0;P2_2=0;break;
case 5:P2_4=0;P2_3=1;P2_2=1;break;
case 6:P2_4=0;P2_3=1;P2_2=0;break;
case 7:P2_4=0;P2_3=0;P2_2=1;break;
case 8:P2_4=0;P2_3=0;P2_2=0;break;
}
P0=NixieTable[Number]; //段码输出
// Delay(1); //显示一段时间
// P0=0x00; //段码清0,消影
}
BUzzer.c
#include <REGX52.H>
#include <INTRINS.H>
//蜂鸣器端口:
sbit Buzzer=P1^5;
/**
* @brief 蜂鸣器私有延时函数,延时500us
* @param 无
* @retval 无
*/
void Buzzer_Delay500us() //@12.000MHz
{
unsigned char i;
_nop_();
i = 247;
while (--i);
}
/**
* @brief 蜂鸣器发声
* @param ms 发声的时长,范围:0~32767
* @retval 无
*/
void Buzzer_Time(unsigned int ms)
{
unsigned int i;
for(i=0;i<ms*2;i++)
{
Buzzer=!Buzzer;
Buzzer_Delay500us();
}
}
main.c
#include <REGX52.H>
#include "Delay.h"
#include "Key.h"
#include "Nixie.h"
#include "Buzzer.h"
unsigned char KeyNum;
void main()
{
Nixie(1,0);
while(1)
{
KeyNum=Key();
if(KeyNum)
{
Buzzer_Time(100);
Nixie(1,KeyNum);
}
}
}
蜂鸣器播放音乐
#include <REGX52.H>
#include "Delay.h"
#include "Timer0.h"
//蜂鸣器端口定义
sbit Buzzer=P1^5;
//播放速度,值为四分音符的时长(ms)
#define SPEED 500
//音符与索引对应表,P:休止符,L:低音,M:中音,H:高音,下划线:升半音符号#
#define P 0
#define L1 1
#define L1_ 2
#define L2 3
#define L2_ 4
#define L3 5
#define L4 6
#define L4_ 7
#define L5 8
#define L5_ 9
#define L6 10
#define L6_ 11
#define L7 12
#define M1 13
#define M1_ 14
#define M2 15
#define M2_ 16
#define M3 17
#define M4 18
#define M4_ 19
#define M5 20
#define M5_ 21
#define M6 22
#define M6_ 23
#define M7 24
#define H1 25
#define H1_ 26
#define H2 27
#define H2_ 28
#define H3 29
#define H4 30
#define H4_ 31
#define H5 32
#define H5_ 33
#define H6 34
#define H6_ 35
#define H7 36
//索引与频率对照表
unsigned int FreqTable[]={
0,
63628,63731,63835,63928,64021,64103,64185,64260,64331,64400,64463,64528,
64580,64633,64684,64732,64777,64820,64860,64898,64934,64968,65000,65030,
65058,65085,65110,65134,65157,65178,65198,65217,65235,65252,65268,65283,
};
//乐谱
unsigned char code Music[]={
//音符,时值,
//1
P, 4,
P, 4,
P, 4,
M6, 2,
M7, 2,
H1, 4+2,
M7, 2,
H1, 4,
H3, 4,
M7, 4+4+4,
M3, 2,
M3, 2,
//2
M6, 4+2,
M5, 2,
M6, 4,
H1, 4,
M5, 4+4+4,
M3, 4,
M4, 4+2,
M3, 2,
M4, 4,
H1, 4,
//3
M3, 4+4,
P, 2,
H1, 2,
H1, 2,
H1, 2,
M7, 4+2,
M4_,2,
M4_,4,
M7, 4,
M7, 8,
P, 4,
M6, 2,
M7, 2,
//4
H1, 4+2,
M7, 2,
H1, 4,
H3, 4,
M7, 4+4+4,
M3, 2,
M3, 2,
M6, 4+2,
M5, 2,
M6, 4,
H1, 4,
//5
M5, 4+4+4,
M2, 2,
M3, 2,
M4, 4,
H1, 2,
M7, 2+2,
H1, 2+4,
H2, 2,
H2, 2,
H3, 2,
H1, 2+4+4,
//6
H1, 2,
M7, 2,
M6, 2,
M6, 2,
M7, 4,
M5_,4,
M6, 4+4+4,
H1, 2,
H2, 2,
H3, 4+2,
H2, 2,
H3, 4,
H5, 4,
//7
H2, 4+4+4,
M5, 2,
M5, 2,
H1, 4+2,
M7, 2,
H1, 4,
H3, 4,
H3, 4+4+4+4,
//8
M6, 2,
M7, 2,
H1, 4,
M7, 4,
H2, 2,
H2, 2,
H1, 4+2,
M5, 2+4+4,
H4, 4,
H3, 4,
H3, 4,
H1, 4,
//9
H3, 4+4+4,
H3, 4,
H6, 4+4,
H5, 4,
H5, 4,
H3, 2,
H2, 2,
H1, 4+4,
P, 2,
H1, 2,
//10
H2, 4,
H1, 2,
H2, 2,
H2, 4,
H5, 4,
H3, 4+4+4,
H3, 4,
H6, 4+4,
H5, 4+4,
//11
H3, 2,
H2, 2,
H1, 4+4,
P, 2,
H1, 2,
H2, 4,
H1, 2,
H2, 2+4,
M7, 4,
M6, 4+4+4,
P, 4,
0xFF //终止标志
};
unsigned char FreqSelect,MusicSelect;
void main()
{
Timer0Init();
while(1)
{
if(Music[MusicSelect]!=0xFF) //如果不是停止标志位
{
FreqSelect=Music[MusicSelect]; //选择音符对应的频率
MusicSelect++;
Delay(SPEED/4*Music[MusicSelect]); //选择音符对应的时值
MusicSelect++;
TR0=0;
Delay(5); //音符间短暂停顿
TR0=1;
}
else //如果是停止标志位
{
TR0=0;
while(1);
}
}
}
void Timer0_Routine() interrupt 1
{
if(FreqTable[FreqSelect]) //如果不是休止符
{
/*取对应频率值的重装载值到定时器*/
TL0 = FreqTable[FreqSelect]%256; //设置定时初值
TH0 = FreqTable[FreqSelect]/256; //设置定时初值
Buzzer=!Buzzer; //翻转蜂鸣器IO口
}
}
存储器
AT24C02
AT24C02是一种可以实现掉电不丢失的存储器,可用于保存单片机运行时想要永久保存的数据信息
存储介质:E2PROM
通讯接口:I2C总线
容量:256字节
引脚
引脚 | 功能 |
---|---|
VCC、GND | 电源(1.8V~5.5V ) |
WP | 写保护(高电平有效) |
SCL、SDA | I2C接口 |
A0、A1、A2 | I2C地址 |
I2C
I2C总线(Inter IC BUS)是由Philips公司开发的一种通用数据总线
两根通信线:SCL(Serial Clock)、SDA(Serial Data)
同步、半双工,带数据应答
通用的I2C总线,可以使各种设备的通信标准统一,对于厂家来说,使用成熟的方案可以缩短芯片设计周期、提高稳定性,对于应用者来说,使用通用的通信协议可以避免学习各种各样的自定义协议,降低了学习和应用的难度
所有I2C设备的SCL连在一起,SDA连在一起
设备的SCL和SDA均要配置成开漏输出模式
SCL和SDA各添加一个上拉电阻,阻值一般为4.7KΩ左右
开漏输出和上拉电阻的共同作用实现了“线与”的功能,此设计主要是为了解决多机通信互相干扰的问题
发送一个字节:SCL低电平期间,主机将数据位依次放到SDA线上(高位在前),然后拉高SCL,从机将在SCL高电平期间读取数据位,所以SCL高电平期间SDA不允许有数据变化,依次循环上述过程8次,即可发送一个字节
接收一个字节:SCL低电平期间,从机将数据位依次放到SDA线上(高位在前),然后拉高SCL,主机将在SCL高电平期间读取数据位,所以SCL高电平期间SDA不允许有数据变化,依次循环上述过程8次,即可接收一个字节(主机在接收之前,需要释放SDA)
发送应答:在接收完一个字节之后,主机在下一个时钟发送一位数据,数据0表示应答,数据1表示非应答
接收应答:在发送完一个字节之后,主机在下一个时钟接收一位数据,判断从机是否应答,数据0表示应答,数据1表示非应答(主机在接收之前,需要释放SDA)
发送一帧数据
接收一帧
复合格式
先发送再接收
•字节写:在WORD ADDRESS处写入数据DATA
•随机读:读出在WORD ADDRESS处的数据DATA
•AT24C02的固定地址为1010,可配置地址本开发板上为000
所以SLAVE ADDRESS+W为0xA0,SLAVE ADDRESS+R为0xA1
•字节写:在“字地址”处写入“数据”
•随机读:读出在“字地址”处的“数据”
I2C.C
#include <REGX52.H>
sbit I2C_SCL=P2^1;
sbit I2C_SDA=P2^0;
/**
* @brief I2C开始
* @param 无
* @retval 无
*/
void I2C_Start(void)
{
I2C_SDA=1;
I2C_SCL=1;
I2C_SDA=0;
I2C_SCL=0;
}
/**
* @brief I2C停止
* @param 无
* @retval 无
*/
void I2C_Stop(void)
{
I2C_SDA=0;
I2C_SCL=1;
I2C_SDA=1;
}
/**
* @brief I2C发送一个字节
* @param Byte 要发送的字节
* @retval 无
*/
void I2C_SendByte(unsigned char Byte)
{
unsigned char i;
for(i=0;i<8;i++)
{
I2C_SDA=Byte&(0x80>>i);
I2C_SCL=1;
I2C_SCL=0;
}
}
/**
* @brief I2C接收一个字节
* @param 无
* @retval 接收到的一个字节数据
*/
unsigned char I2C_ReceiveByte(void)
{
unsigned char i,Byte=0x00;
I2C_SDA=1;
for(i=0;i<8;i++)
{
I2C_SCL=1;
if(I2C_SDA){Byte|=(0x80>>i);}
I2C_SCL=0;
}
return Byte;
}
/**
* @brief I2C发送应答
* @param AckBit 应答位,0为应答,1为非应答
* @retval 无
*/
void I2C_SendAck(unsigned char AckBit)
{
I2C_SDA=AckBit;
I2C_SCL=1;
I2C_SCL=0;
}
/**
* @brief I2C接收应答位
* @param 无
* @retval 接收到的应答位,0为应答,1为非应答
*/
unsigned char I2C_ReceiveAck(void)
{
unsigned char AckBit;
I2C_SDA=1;
I2C_SCL=1;
AckBit=I2C_SDA;
I2C_SCL=0;
return AckBit;
}
AT24C02
#include <REGX52.H>
#include "I2C.h"
#define AT24C02_ADDRESS 0xA0
/**
* @brief AT24C02写入一个字节
* @param WordAddress 要写入字节的地址
* @param Data 要写入的数据
* @retval 无
*/
void AT24C02_WriteByte(unsigned char WordAddress,Data)
{
I2C_Start();
I2C_SendByte(AT24C02_ADDRESS);
I2C_ReceiveAck();
I2C_SendByte(WordAddress);
I2C_ReceiveAck();
I2C_SendByte(Data);
I2C_ReceiveAck();
I2C_Stop();
}
/**
* @brief AT24C02读取一个字节
* @param WordAddress 要读出字节的地址
* @retval 读出的数据
*/
unsigned char AT24C02_ReadByte(unsigned char WordAddress)
{
unsigned char Data;
I2C_Start();
I2C_SendByte(AT24C02_ADDRESS);
I2C_ReceiveAck();
I2C_SendByte(WordAddress);
I2C_ReceiveAck();
I2C_Start();
I2C_SendByte(AT24C02_ADDRESS|0x01);
I2C_ReceiveAck();
Data=I2C_ReceiveByte();
I2C_SendAck(1);
I2C_Stop();
return Data;
}
#include <REGX52.H>
#include "LCD1602.h"
#include "Key.h"
#include "AT24C02.h"
#include "Delay.h"
unsigned char KeyNum;
unsigned int Num;
void main()
{
LCD_Init();
LCD_ShowNum(1,1,Num,5);
while(1)
{
KeyNum=Key();
if(KeyNum==1) //K1按键,Num自增
{
Num++;
LCD_ShowNum(1,1,Num,5);
}
if(KeyNum==2) //K2按键,Num自减
{
Num--;
LCD_ShowNum(1,1,Num,5);
}
if(KeyNum==3) //K3按键,向AT24C02写入数据
{
AT24C02_WriteByte(0,Num%256);
Delay(5);
AT24C02_WriteByte(1,Num/256);
Delay(5);
LCD_ShowString(2,1,"Write OK");
Delay(1000);
LCD_ShowString(2,1," ");
}
if(KeyNum==4) //K4按键,从AT24C02读取数据
{
Num=AT24C02_ReadByte(0);
Num|=AT24C02_ReadByte(1)<<8;
LCD_ShowNum(1,1,Num,5);
LCD_ShowString(2,1,"Read OK ");
Delay(1000);
LCD_ShowString(2,1," ");
}
}
}
秒表
#include <REGX52.H>
#include "Timer0.h"
#include "Key.h"
#include "Nixie.h"
#include "Delay.h"
#include "AT24C02.h"
unsigned char KeyNum;
unsigned char Min,Sec,MiniSec;
unsigned char RunFlag;
void main()
{
Timer0_Init();
while(1)
{
KeyNum=Key();
if(KeyNum==1) //K1按键按下
{
RunFlag=!RunFlag; //启动标志位翻转
}
if(KeyNum==2) //K2按键按下
{
Min=0; //分秒清0
Sec=0;
MiniSec=0;
}
if(KeyNum==3) //K3按键按下
{
AT24C02_WriteByte(0,Min); //将分秒写入AT24C02
Delay(5);
AT24C02_WriteByte(1,Sec);
Delay(5);
AT24C02_WriteByte(2,MiniSec);
Delay(5);
}
if(KeyNum==4) //K4按键按下
{
Min=AT24C02_ReadByte(0); //读出AT24C02数据
Sec=AT24C02_ReadByte(1);
MiniSec=AT24C02_ReadByte(2);
}
Nixie_SetBuf(1,Min/10); //设置显示缓存,显示数据
Nixie_SetBuf(2,Min%10);
Nixie_SetBuf(3,11);
Nixie_SetBuf(4,Sec/10);
Nixie_SetBuf(5,Sec%10);
Nixie_SetBuf(6,11);
Nixie_SetBuf(7,MiniSec/10);
Nixie_SetBuf(8,MiniSec%10);
}
}
/**
* @brief 秒表驱动函数,在中断中调用
* @param 无
* @retval 无
*/
void Sec_Loop(void)
{
if(RunFlag)
{
MiniSec++;
if(MiniSec>=100)
{
MiniSec=0;
Sec++;
if(Sec>=60)
{
Sec=0;
Min++;
if(Min>=60)
{
Min=0;
}
}
}
}
}
void Timer0_Routine() interrupt 1
{
static unsigned int T0Count1,T0Count2,T0Count3;
TL0 = 0x18; //设置定时初值
TH0 = 0xFC; //设置定时初值
T0Count1++;
if(T0Count1>=20)
{
T0Count1=0;
Key_Loop(); //20ms调用一次按键驱动函数
}
T0Count2++;
if(T0Count2>=2)
{
T0Count2=0;
Nixie_Loop();//2ms调用一次数码管驱动函数
}
T0Count3++;
if(T0Count3>=10)
{
T0Count3=0;
Sec_Loop(); //10ms调用一次数秒表驱动函数
}
}
DS18B20温度传感器
DS18B20是一种常见的数字温度传感器,其控制命令和数据都是以数字信号的方式输入输出,相比较于模拟温度传感器,具有功能强大、硬件简单、易扩展、抗干扰性强等特点
测温范围:-55°C 到 +125°C
通信接口:1-Wire(单总线)
其它特征:可形成总线结构、内置温度报警功能、可寄生供电
引脚 | 功能 |
---|---|
VDD | 电源(3.0V ~ 5.5V) |
GND | 电源地 |
DQ | 单总线接口 |
NC | 无连接 |
内部构图
64-BIT ROM:作为器件地址,用于总线通信的寻址
SCRATCHPAD(暂存器):用于总线的数据交互
EEPROM:用于保存温度触发阈值和配置参数
DS18B20温度读取
DS18B20.c
#include <REGX52.H>
#include "OneWire.h"
//DS18B20指令
#define DS18B20_SKIP_ROM 0xCC
#define DS18B20_CONVERT_T 0x44
#define DS18B20_READ_SCRATCHPAD 0xBE
/**
* @brief DS18B20开始温度变换
* @param 无
* @retval 无
*/
void DS18B20_ConvertT(void)
{
OneWire_Init();
OneWire_SendByte(DS18B20_SKIP_ROM);
OneWire_SendByte(DS18B20_CONVERT_T);
}
/**
* @brief DS18B20读取温度
* @param 无
* @retval 温度数值
*/
float DS18B20_ReadT(void)
{
unsigned char TLSB,TMSB;
int Temp;
float T;
OneWire_Init();
OneWire_SendByte(DS18B20_SKIP_ROM);
OneWire_SendByte(DS18B20_READ_SCRATCHPAD);
TLSB=OneWire_ReceiveByte();
TMSB=OneWire_ReceiveByte();
Temp=(TMSB<<8)|TLSB;
T=Temp/16.0;
return T;
}
OneWire.c
#include <REGX52.H>
//引脚定义
sbit OneWire_DQ=P3^7;
/**
* @brief 单总线初始化
* @param 无
* @retval 从机响应位,0为响应,1为未响应
*/
unsigned char OneWire_Init(void)
{
unsigned char i;
unsigned char AckBit;
OneWire_DQ=1;
OneWire_DQ=0;
i = 247;while (--i); //Delay 500us
OneWire_DQ=1;
i = 32;while (--i); //Delay 70us
AckBit=OneWire_DQ;
i = 247;while (--i); //Delay 500us
return AckBit;
}
/**
* @brief 单总线发送一位
* @param Bit 要发送的位
* @retval 无
*/
void OneWire_SendBit(unsigned char Bit)
{
unsigned char i;
OneWire_DQ=0;
i = 4;while (--i); //Delay 10us
OneWire_DQ=Bit;
i = 24;while (--i); //Delay 50us
OneWire_DQ=1;
}
/**
* @brief 单总线接收一位
* @param 无
* @retval 读取的位
*/
unsigned char OneWire_ReceiveBit(void)
{
unsigned char i;
unsigned char Bit;
OneWire_DQ=0;
i = 2;while (--i); //Delay 5us
OneWire_DQ=1;
i = 2;while (--i); //Delay 5us
Bit=OneWire_DQ;
i = 24;while (--i); //Delay 50us
return Bit;
}
/**
* @brief 单总线发送一个字节
* @param Byte 要发送的字节
* @retval 无
*/
void OneWire_SendByte(unsigned char Byte)
{
unsigned char i;
for(i=0;i<8;i++)
{
OneWire_SendBit(Byte&(0x01<<i));
}
}
/**
* @brief 单总线接收一个字节
* @param 无
* @retval 接收的一个字节
*/
unsigned char OneWire_ReceiveByte(void)
{
unsigned char i;
unsigned char Byte=0x00;
for(i=0;i<8;i++)
{
if(OneWire_ReceiveBit()){Byte|=(0x01<<i);}
}
return Byte;
}
温度报警器
main
#include <REGX52.H>
#include "LCD1602.h"
#include "DS18B20.h"
#include "Delay.h"
#include "AT24C02.h"
#include "Key.h"
#include "Timer0.h"
float T,TShow;
char TLow,THigh;
unsigned char KeyNum;
void main()
{
DS18B20_ConvertT(); //上电先转换一次温度,防止第一次读数据错误
Delay(1000); //等待转换完成
THigh=AT24C02_ReadByte(0); //读取温度阈值数据
TLow=AT24C02_ReadByte(1);
if(THigh>125 || TLow<-55 || THigh<=TLow)
{
THigh=20; //如果阈值非法,则设为默认值
TLow=15;
}
LCD_Init();
LCD_ShowString(1,1,"T:");
LCD_ShowString(2,1,"TH:");
LCD_ShowString(2,9,"TL:");
LCD_ShowSignedNum(2,4,THigh,3);
LCD_ShowSignedNum(2,12,TLow,3);
Timer0_Init();
while(1)
{
KeyNum=Key();
/*温度读取及显示*/
DS18B20_ConvertT(); //转换温度
T=DS18B20_ReadT(); //读取温度
if(T<0) //如果温度小于0
{
LCD_ShowChar(1,3,'-'); //显示负号
TShow=-T; //将温度变为正数
}
else //如果温度大于等于0
{
LCD_ShowChar(1,3,'+'); //显示正号
TShow=T;
}
LCD_ShowNum(1,4,TShow,3); //显示温度整数部分
LCD_ShowChar(1,7,'.'); //显示小数点
LCD_ShowNum(1,8,(unsigned long)(TShow*100)%100,2);//显示温度小数部分
/*阈值判断及显示*/
if(KeyNum)
{
if(KeyNum==1) //K1按键,THigh自增
{
THigh++;
if(THigh>125){THigh=125;}
}
if(KeyNum==2) //K2按键,THigh自减
{
THigh--;
if(THigh<=TLow){THigh++;}
}
if(KeyNum==3) //K3按键,TLow自增
{
TLow++;
if(TLow>=THigh){TLow--;}
}
if(KeyNum==4) //K4按键,TLow自减
{
TLow--;
if(TLow<-55){TLow=-55;}
}
LCD_ShowSignedNum(2,4,THigh,3); //显示阈值数据
LCD_ShowSignedNum(2,12,TLow,3);
AT24C02_WriteByte(0,THigh); //写入到At24C02中保存
Delay(5);
AT24C02_WriteByte(1,TLow);
Delay(5);
}
if(T>THigh) //越界判断
{
LCD_ShowString(1,13,"OV:H");
}
else if(T<TLow)
{
LCD_ShowString(1,13,"OV:L");
}
else
{
LCD_ShowString(1,13," ");
}
}
}
void Timer0_Routine() interrupt 1
{
static unsigned int T0Count;
TL0 = 0x18; //设置定时初值
TH0 = 0xFC; //设置定时初值
T0Count++;
if(T0Count>=20)
{
T0Count=0;
Key_Loop(); //每20ms调用一次按键驱动函数
}
}
所需要的模块
单总线
•单总线(1-Wire BUS)是由Dallas公司开发的一种通用数据总线
•一根通信线:DQ
•异步、半双工
•单总线只需要一根通信线即可实现数据的双向传输,当采用寄生供电时,还可以省去设备的VDD线路,此时,供电加通信只需要DQ和GND两根线
设备的DQ均要配置成开漏输出模式
DQ添加一个上拉电阻,阻值一般为4.7KΩ左右
若此总线的从机采取寄生供电,则主机还应配一个强上拉输出电路
单总线时序结构
初始化:主机将总线拉低至少480us,然后释放总线,等待15~60us后,存在的从机会拉低总线60~240us以响应主机,之后从机将释放总线
发送一位
发送一位:主机将总线拉低60~120us,然后释放总线,表示发送0;主机将总线拉低1~15us,然后释放总线,表示发送1。从机将在总线拉低30us后(典型值)读取电平,整个时间片应大于60us
接收1位
接收一位:主机将总线拉低1~15us,然后释放总线,并在拉低后15us内读取总线电平(尽量贴近15us的末尾),读取为低电平则为接收0,读取为高电平则为接收1 ,整个时间片应大于60us
•发送一个字节:连续调用8次发送一位的时序,依次发送一个字节的8位(低位在前)
•接收一个字节:连续调用8次接收一位的时序,依次接收一个字节的8位(低位在前)
DS18B20操作
初始化:从机复位,主机判断从机是否响应
ROM操作:ROM指令+本指令需要的读写操作
功能操作:功能指令+本指令需要的读写操作
ROM****指令 | 功能指令 |
---|---|
SEARCH ROM [F0h] | CONVERT T [44h] |
READ ROM [33h] | WRITE SCRATCHPAD [4Eh] |
MATCH ROM [55h] | READ SCRATCHPAD [BEh] |
SKIP ROM [CCh] | COPY SCRATCHPAD [48h] |
ALARM SEARCH [ECh] | RECALL E2 [B8h] |
READ POWER SUPPLY [B4h] |
•温度变换:初始化→跳过ROM →开始温度变换
•温度读取:初始化→跳过ROM →读暂存器→连续的读操作
温度存储格式
LCD1602
LCD1602(Liquid Crystal Display)液晶显示屏是一种字符型液晶显示模块,可以显示ASCII码的标准字符和其它的一些内置特殊字符,还可以有8个自定义字符
显示容量:16×2个字符,每个字符为5*7点阵
引脚 | 功能 |
---|---|
VSS | 地 |
VDD | 电源正极(4.5~5.5V) |
VO | 对比度调节电压 |
RS | 数据/指令选择,1为数据,0为指令 |
RW | 读/写选择,1为读,0为写 |
E | 使能,1为数据有效,下降沿执行命令 |
D0~D7 | 数据输入/输出 |
A | 背光灯电源正极 |
K | 背光灯电源负极 |
字模
字符:根据一定规则建立的数字到字符的映射(ASCII码表)
例如:0x21=’!’,0x41=’A’,0x00=’\0’
定义方法:char x=‘A’;(等效于char x=0x41;)
字符数组:存储字符变量的一个数组
定义方法:char y[]={’A’, ’B’, ’C’};
(等效于char y[]={0x41,0x42,0x43}; )
字符串:在字符数组后加一个字符串结束标志,本质上是字符数组
定义方法:char z[]=”ABC”;(等效于char z[]={’A’, ’B’, ’C’, ’\0’};)
LCD1602.c
#include <REGX52.H>
//引脚定义
sbit LCD_RS=P2^6;
sbit LCD_RW=P2^5;
sbit LCD_E=P2^7;
#define LCD_DataPort P0
/**
* @brief LCD1602延时函数,12MHz调用可延时1ms
* @param 无
* @retval 无
*/
void LCD_Delay() //@12.000MHz 1ms
{
unsigned char i, j;
i = 2;
j = 239;
do
{
while (--j);
} while (--i);
}
/**
* @brief LCD1602写命令
* @param Command 要写入的命令
* @retval 无
*/
void LCD_WriteCommand(unsigned char Command)
{
LCD_RS=0;
LCD_RW=0;
LCD_DataPort=Command;
LCD_E=1;
LCD_Delay();
LCD_E=0;
LCD_Delay();
}
/**
* @brief LCD1602写数据
* @param Data 要写入的数据
* @retval 无
*/
void LCD_WriteData(unsigned char Data)
{
LCD_RS=1;
LCD_RW=0;
LCD_DataPort=Data;
LCD_E=1;
LCD_Delay();
LCD_E=0;
LCD_Delay();
}
/**
* @brief LCD1602初始化函数
* @param 无
* @retval 无
*/
void LCD_Init(void)
{
LCD_WriteCommand(0x38);
LCD_WriteCommand(0x0C);
LCD_WriteCommand(0x06);
LCD_WriteCommand(0x01);
}
/**
* @brief LCD1602设置光标位置
* @param Line 行位置,范围:1~2
* @param Column 列位置,范围:1~16
* @retval 无
*/
void LCD_SetCursor(unsigned char Line,unsigned char Column)
{
if(Line==1)
{
LCD_WriteCommand(0x80|(Column-1));
}
else
{
LCD_WriteCommand(0x80|(Column-1)+0x40);
}
}
/**
* @brief 在LCD1602指定位置上显示一个字符
* @param Line 行位置,范围:1~2
* @param Column 列位置,范围:1~16
* @param Char 要显示的字符
* @retval 无
*/
void LCD_ShowChar(unsigned char Line,unsigned char Column,unsigned char Char)
{
LCD_SetCursor(Line,Column);
LCD_WriteData(Char);
}
/**
* @brief 在LCD1602指定位置开始显示所给字符串
* @param Line 起始行位置,范围:1~2
* @param Column 起始列位置,范围:1~16
* @param String 要显示的字符串
* @retval 无
*/
void LCD_ShowString(unsigned char Line,unsigned char Column,unsigned char *String)
{
unsigned char i;
LCD_SetCursor(Line,Column);
for(i=0;String[i]!='\0';i++)
{
LCD_WriteData(String[i]);
}
}
/**
* @brief 返回值=X的Y次方
*/
int LCD_Pow(int X,int Y)
{
unsigned char i;
int Result=1;
for(i=0;i<Y;i++)
{
Result*=X;
}
return Result;
}
/**
* @brief 在LCD1602指定位置开始显示所给数字
* @param Line 起始行位置,范围:1~2
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:0~65535
* @param Length 要显示数字的长度,范围:1~5
* @retval 无
*/
void LCD_ShowNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length)
{
unsigned char i;
LCD_SetCursor(Line,Column);
for(i=Length;i>0;i--)
{
LCD_WriteData('0'+Number/LCD_Pow(10,i-1)%10);
}
}
/**
* @brief 在LCD1602指定位置开始以有符号十进制显示所给数字
* @param Line 起始行位置,范围:1~2
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:-32768~32767
* @param Length 要显示数字的长度,范围:1~5
* @retval 无
*/
void LCD_ShowSignedNum(unsigned char Line,unsigned char Column,int Number,unsigned char Length)
{
unsigned char i;
unsigned int Number1;
LCD_SetCursor(Line,Column);
if(Number>=0)
{
LCD_WriteData('+');
Number1=Number;
}
else
{
LCD_WriteData('-');
Number1=-Number;
}
for(i=Length;i>0;i--)
{
LCD_WriteData('0'+Number1/LCD_Pow(10,i-1)%10);
}
}
/**
* @brief 在LCD1602指定位置开始以十六进制显示所给数字
* @param Line 起始行位置,范围:1~2
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:0~0xFFFF
* @param Length 要显示数字的长度,范围:1~4
* @retval 无
*/
void LCD_ShowHexNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length)
{
unsigned char i;
unsigned char SingleNumber;
LCD_SetCursor(Line,Column);
for(i=Length;i>0;i--)
{
SingleNumber=Number/LCD_Pow(16,i-1)%16;
if(SingleNumber<10)
{
LCD_WriteData('0'+SingleNumber);
}
else
{
LCD_WriteData('A'+SingleNumber-10);
}
}
}
/**
* @brief 在LCD1602指定位置开始以二进制显示所给数字
* @param Line 起始行位置,范围:1~2
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:0~1111 1111 1111 1111
* @param Length 要显示数字的长度,范围:1~16
* @retval 无
*/
void LCD_ShowBinNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length)
{
unsigned char i;
LCD_SetCursor(Line,Column);
for(i=Length;i>0;i--)
{
LCD_WriteData('0'+Number/LCD_Pow(2,i-1)%2);
}
}
LCD1602.h
#ifndef __LCD1602_H__
#define __LCD1602_H__
void LCD_Init(void);
void LCD_ShowChar(unsigned char Line,unsigned char Column,unsigned char Char);
void LCD_ShowString(unsigned char Line,unsigned char Column,unsigned char *String);
void LCD_ShowNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length);
void LCD_ShowSignedNum(unsigned char Line,unsigned char Column,int Number,unsigned char Length);
void LCD_ShowHexNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length);
void LCD_ShowBinNum(unsigned char Line,unsigned char Column,unsigned int Number,unsigned char Length);
#endif
#include <REGX52.H>
#include "LCD1602.h"
#include "Delay.h"
void main()
{
LCD_Init(); //LCD初始化
LCD_ShowChar(1,1,'A'); //在1行1列显示字符A
LCD_ShowString(1,3,"Hello"); //在1行3列显示字符串Hello
LCD_ShowNum(1,9,66,2); //在1行9列显示数字66,长度为2
LCD_ShowSignedNum(1,12,-88,2); //在1行12列显示有符号数字-88,长度为2
LCD_ShowHexNum(2,1,0xA5,2); //在2行1列显示十六进制数字0xA5,长度为2
LCD_ShowBinNum(2,4,0xA5,8); //在2行4列显示二进制数字0xA5,长度为8
LCD_ShowChar(2,13,0xDF); //在2行13列显示编码为0xDF的字符
LCD_ShowChar(2,14,'C'); //在2行14列显示字符C
while(1)
{
}
}
直流电机驱动
直流电机是一种将电能转换为机械能的装置。一般的直流电机有两个电极,当电极正接时,电机正转,当电极反接时,电机反转
直流电机主要由永磁体(定子)、线圈(转子)和换向器组成
除直流电机外,常见的电机还有步进电机、舵机、无刷电机、空心杯电机等
器件直接驱动
H桥驱动
PWM
PWM(Pulse Width Modulation)即脉冲宽度调制,在具有惯性的系统中,可以通过对一系列脉冲的宽度进行调制,来等效地获得所需要的模拟参量,常应用于电机控速、开关电源等领域
PWM重要参数:
频率 = 1 / TS 占空比 = TON / TS 精度 = 占空比变化步距
模型结构
LED呼吸
#include <REGX52.H>
sbit LED=P2^0;
void Delay(unsigned int t)
{
while(t--);
}
void main()
{
unsigned char Time,i;
while(1)
{
for(Time=0;Time<100;Time++) //改变亮灭时间,由暗到亮
{
for(i=0;i<20;i++) //计次延时
{
LED=0; //LED亮
Delay(Time); //延时Time
LED=1; //LED灭
Delay(100-Time); //延时100-Time
}
}
for(Time=100;Time>0;Time--) //改变亮灭时间,由亮到暗
{
for(i=0;i<20;i++) //计次延时
{
LED=0; //LED亮
Delay(Time); //延时Time
LED=1; //LED灭
Delay(100-Time); //延时100-Time
}
}
}
}
直流电机调速
#include <REGX52.H>
#include "Delay.h"
#include "Key.h"
#include "Nixie.h"
#include "Timer0.h"
sbit Motor=P1^0;
unsigned char Counter,Compare; //计数值和比较值,用于输出PWM
unsigned char KeyNum,Speed;
void main()
{
Timer0_Init();
while(1)
{
KeyNum=Key();
if(KeyNum==1)
{
Speed++;
Speed%=4;
if(Speed==0){Compare=0;} //设置比较值,改变PWM占空比
if(Speed==1){Compare=50;}
if(Speed==2){Compare=75;}
if(Speed==3){Compare=100;}
}
Nixie(1,Speed);
}
}
void Timer0_Routine() interrupt 1
{
TL0 = 0x9C; //设置定时初值
TH0 = 0xFF; //设置定时初值
Counter++;
Counter%=100; //计数值变化范围限制在0~99
if(Counter<Compare) //计数值小于比较值
{
Motor=1; //输出1
}
else //计数值大于比较值
{
Motor=0; //输出0
}
}
AD/DA介绍
AD(Analog to Digital):模拟-数字转换,将模拟信号转换为计算机可操作的数字信号
DA(Digital to Analog):数字-模拟转换,将计算机输出的数字信号转换为模拟信号
AD/DA转换打开了计算机与模拟信号的大门,极大的提高了计算机系统的应用范围,也为模拟信号数字化处理提供了可能
硬件电路模型
AD转换通常有多个输入通道,用多路选择开关连接至AD转换器,以实现AD多路复用的目的,提高硬件利用率
AD/DA与单片机数据传送可使用并口(速度快、原理简单),也可使用串口(接线少、使用方便)
可将AD/DA模块直接集成在单片机内,这样直接写入/读出寄存器就可进行AD/DA转换,单片机的IO口可直接复用为AD/DA的通道
运算放大器简单介绍
运算放大器(简称“运放”)是具有很高放大倍数的放大电路单元。内部集成了差分放大器、电压放大器、功率放大器三级放大电路,是一个性能完备、功能强大的通用放大电路单元,由于其应用十分广泛,现已作为基本的电路元件出现在电路图中
运算放大器可构成的电路有:电压比较器、反相放大器、同相放大器、电压跟随器、加法器、积分器、微分器等
运算放大器电路的分析方法:虚短、虚断(负反馈条件下)
•T型电阻网络DA转换器:
DA转换
•PWM型DA转换器:
AD/DA性能指标
分辨率:指AD/DA数字量的精细程度,通常用位数表示。例如,对于5V电源系统来说,8位的AD可将5V等分为256份,即数字量变化最小一个单位时,模拟量变化5V/256=0.01953125V,所以,8位AD的电压分辨率为0.01953125V,AD/DA的位数越高,分辨率就越高
转换速度:表示AD/DA的最大采样/建立频率,通常用转换频率或者转换时间来表示,对于采样/输出高速信号,应注意AD/DA的转换速度
XPT2046时序
XPT2046
#include <REGX52.H>
#include <INTRINS.H>
//引脚定义
sbit XPY2046_DIN=P3^4;
sbit XPY2046_CS=P3^5;
sbit XPY2046_DCLK=P3^6;
sbit XPY2046_DOUT=P3^7;
/**
* @brief ZPT2046读取AD值
* @param Command 命令字,范围:头文件内定义的宏,结尾的数字表示转换的位数
* @retval AD转换后的数字量,范围:8位为0~255,12位为0~4095
*/
unsigned int XPT2046_ReadAD(unsigned char Command)
{
unsigned char i;
unsigned int Data=0;
XPY2046_DCLK=0;
XPY2046_CS=0;
for(i=0;i<8;i++)
{
XPY2046_DIN=Command&(0x80>>i);
XPY2046_DCLK=1;
XPY2046_DCLK=0;
}
for(i=0;i<16;i++)
{
XPY2046_DCLK=1;
XPY2046_DCLK=0;
if(XPY2046_DOUT){Data|=(0x8000>>i);}
}
XPY2046_CS=1;
return Data>>8;
}
main.c
#include <REGX52.H>
#include "Delay.h"
#include "LCD1602.h"
#include "XPT2046.h"
unsigned int ADValue;
void main(void)
{
LCD_Init();
LCD_ShowString(1,1,"ADJ NTC GR");
while(1)
{
ADValue=XPT2046_ReadAD(XPT2046_XP); //读取AIN0,可调电阻
LCD_ShowNum(2,1,ADValue,3); //显示AIN0
ADValue=XPT2046_ReadAD(XPT2046_YP); //读取AIN1,热敏电阻
LCD_ShowNum(2,6,ADValue,3); //显示AIN1
ADValue=XPT2046_ReadAD(XPT2046_VBAT); //读取AIN2,光敏电阻
LCD_ShowNum(2,11,ADValue,3); //显示AIN2
Delay(100);
}
}
DA数模转换
main.c
#include <REGX52.H>
#include "Delay.h"
#include "Timer0.h"
sbit DA=P2^1;
unsigned char Counter,Compare; //计数值和比较值,用于输出PWM
unsigned char i;
void main()
{
Timer0_Init();
while(1)
{
for(i=0;i<100;i++)
{
Compare=i; //设置比较值,改变PWM占空比
Delay(10);
}
for(i=100;i>0;i--)
{
Compare=i; //设置比较值,改变PWM占空比
Delay(10);
}
}
}
void Timer0_Routine() interrupt 1
{
TL0 = 0x9C; //设置定时初值
TH0 = 0xFF; //设置定时初值
Counter++;
Counter%=100; //计数值变化范围限制在0~99
if(Counter<Compare) //计数值小于比较值
{
DA=1; //输出1
}
else //计数值大于比较值
{
DA=0; //输出0
}
}
红外遥控
红外遥控是利用红外光进行通信的设备,由红外LED将调制后的信号发出,由专用的红外接收头进行解调输出
通信方式:单工,异步
红外LED波长:940nm
通信协议标准:NEC标准
发送与接收
空闲状态:红外LED不亮,接收头输出高电平
发送低电平:红外LED以38KHz频率闪烁发光,接收头输出低电平
发送高电平:红外LED不亮,接收头输出高电平
红外NEC编码
标准NEC编码为4byte(32bit)数据构成,
分别是1byte地址+1byte地址反码+1byte数据+1byte数据反码
规定
因为使用的是红外信号,日常的生活中会有许许多多的的红外信号(太阳),有很多是是与发射的频率相同或接近的,
因此,规定发送的是以38kHz闪烁的信号(后文所称的闪亮均为这种信号)为检测到的信号,
如果检测到这个频率闪烁的在规定频率范围内的红外光则认为是1(高电平),没有检测到这个频率的信号则认为是0(低电平)
与控制设备连接时有两种方案
使用两个管脚
这是电路图
描述:使用两个管脚控制2个NPN三极管,做成与的逻辑,有且仅有2个三极管均导通时才能时LED发光,使用一个管脚产生38KHz的方波,另一个管脚产生协议,以此做到输出1时闪亮,0时为不亮
优点:编程简单,逻辑简单
缺点:使用多个引脚,电路较复杂
使用单个管脚
这是电路图(小功率时可以之间管脚驱动LED)
描述:通过编程实现在输出1时闪亮,0时不亮
优点:电路结构简单
缺点:编程较复杂
接收
接收部分一般使用1838一体式红外接收头
1838内部的流程如图
首先接收到指定频率附近的红外信号,并将其放大
之后检测是否出现38kHz的方波
之后再进行反相操作,注意这点
所以说如果出现闪亮情况则输出低电平,反之输出高电平(默认高电平)
协议层
分类和功能
名称 | 功能 |
---|---|
数据码1 | 表示数据为1 |
重复码 | 表示重复上次的数据 |
引导码 | 表示开始发送数据 |
结束码 | 在发送完数据帧或重复帧之后的占位符 |
注意,下面图片中给出的高电平为以38KHz的闪亮状态,为便于表示,只使用高电平代表
由9ms高电平闪亮和4.5ms低电平不亮构成,共13.5ms
表示数据帧的开始
重复码
由9ms高电平闪亮和2.25ms低电平不亮构成,共11.25ms
表示重复之前的数据
数据码0
由0.56ms高电平闪亮和0.56ms低电平不亮构成,共1.12ms
表示数据0
数据码1
由0.56ms高电平闪亮和1.96ms低电平不亮构成,共2.52ms
表示数据1
结束位
由0.63ms高电平闪亮构成
用于数据帧或重复码之后的占位
遥控器键码
•STC89C52有4个外部中断
•STC89C52的外部中断有两种触发方式:
下降沿触发和低电平触发
•中断号:
红外遥控控制电机
中断IT0
#include <REGX52.H>
/**
* @brief 外部中断0初始化
* @param 无
* @retval 无
*/
void Int0_Init(void)
{
IT0=1;
IE0=0;
EX0=1;
EA=1;
PX0=1;
}
/*外部中断0中断函数模板
void Int0_Routine(void) interrupt 0
{
}
*/
红外遥控IR
#include <REGX52.H>
#include "Timer0.h"
#include "Int0.h"
unsigned int IR_Time;
unsigned char IR_State;
unsigned char IR_Data[4];
unsigned char IR_pData;
unsigned char IR_DataFlag;
unsigned char IR_RepeatFlag;
unsigned char IR_Address;
unsigned char IR_Command;
/**
* @brief 红外遥控初始化
* @param 无
* @retval 无
*/
void IR_Init(void)
{
Timer0_Init();
Int0_Init();
}
/**
* @brief 红外遥控获取收到数据帧标志位
* @param 无
* @retval 是否收到数据帧,1为收到,0为未收到
*/
unsigned char IR_GetDataFlag(void)
{
if(IR_DataFlag)
{
IR_DataFlag=0;
return 1;
}
return 0;
}
/**
* @brief 红外遥控获取收到连发帧标志位
* @param 无
* @retval 是否收到连发帧,1为收到,0为未收到
*/
unsigned char IR_GetRepeatFlag(void)
{
if(IR_RepeatFlag)
{
IR_RepeatFlag=0;
return 1;
}
return 0;
}
/**
* @brief 红外遥控获取收到的地址数据
* @param 无
* @retval 收到的地址数据
*/
unsigned char IR_GetAddress(void)
{
return IR_Address;
}
/**
* @brief 红外遥控获取收到的命令数据
* @param 无
* @retval 收到的命令数据
*/
unsigned char IR_GetCommand(void)
{
return IR_Command;
}
//外部中断0中断函数,下降沿触发执行
void Int0_Routine(void) interrupt 0
{
if(IR_State==0) //状态0,空闲状态
{
Timer0_SetCounter(0); //定时计数器清0
Timer0_Run(1); //定时器启动
IR_State=1; //置状态为1
}
else if(IR_State==1) //状态1,等待Start信号或Repeat信号
{
IR_Time=Timer0_GetCounter(); //获取上一次中断到此次中断的时间
Timer0_SetCounter(0); //定时计数器清0
//如果计时为13.5ms,则接收到了Start信号(判定值在12MHz晶振下为13500,在11.0592MHz晶振下为12442)
if(IR_Time>13500-500 && IR_Time<13500+500)
{
IR_State=2; //置状态为2
}
//如果计时为11.25ms,则接收到了Repeat信号(判定值在12MHz晶振下为11250,在11.0592MHz晶振下为10368)
else if(IR_Time>11250-500 && IR_Time<11250+500)
{
IR_RepeatFlag=1; //置收到连发帧标志位为1
Timer0_Run(0); //定时器停止
IR_State=0; //置状态为0
}
else //接收出错
{
IR_State=1; //置状态为1
}
}
else if(IR_State==2) //状态2,接收数据
{
IR_Time=Timer0_GetCounter(); //获取上一次中断到此次中断的时间
Timer0_SetCounter(0); //定时计数器清0
//如果计时为1120us,则接收到了数据0(判定值在12MHz晶振下为1120,在11.0592MHz晶振下为1032)
if(IR_Time>1120-500 && IR_Time<1120+500)
{
IR_Data[IR_pData/8]&=~(0x01<<(IR_pData%8)); //数据对应位清0
IR_pData++; //数据位置指针自增
}
//如果计时为2250us,则接收到了数据1(判定值在12MHz晶振下为2250,在11.0592MHz晶振下为2074)
else if(IR_Time>2250-500 && IR_Time<2250+500)
{
IR_Data[IR_pData/8]|=(0x01<<(IR_pData%8)); //数据对应位置1
IR_pData++; //数据位置指针自增
}
else //接收出错
{
IR_pData=0; //数据位置指针清0
IR_State=1; //置状态为1
}
if(IR_pData>=32) //如果接收到了32位数据
{
IR_pData=0; //数据位置指针清0
if((IR_Data[0]==~IR_Data[1]) && (IR_Data[2]==~IR_Data[3])) //数据验证
{
IR_Address=IR_Data[0]; //转存数据
IR_Command=IR_Data[2];
IR_DataFlag=1; //置收到连发帧标志位为1
}
Timer0_Run(0); //定时器停止
IR_State=0; //置状态为0
}
}
}
main.c
#include <REGX52.H>
#include "Delay.h"
#include "LCD1602.h"
#include "IR.h"
unsigned char Num;
unsigned char Address;
unsigned char Command;
void main()
{
LCD_Init();
LCD_ShowString(1,1,"ADDR CMD NUM");
LCD_ShowString(2,1,"00 00 000");
IR_Init();
while(1)
{
if(IR_GetDataFlag() || IR_GetRepeatFlag()) //如果收到数据帧或者收到连发帧
{
Address=IR_GetAddress(); //获取遥控器地址码
Command=IR_GetCommand(); //获取遥控器命令码
LCD_ShowHexNum(2,1,Address,2); //显示遥控器地址码
LCD_ShowHexNum(2,7,Command,2); //显示遥控器命令码
if(Command==IR_VOL_MINUS) //如果遥控器VOL-按键按下
{
Num--; //Num自减
}
if(Command==IR_VOL_ADD) //如果遥控器VOL+按键按下
{
Num++; //Num自增
}
LCD_ShowNum(2,12,Num,3); //显示Num
}
}
}
标签:P2,入门,void,51,unsigned,char,单片机,LCD,include
From: https://www.cnblogs.com/abldh12/p/18088216