首页 > 其他分享 >【RAG实践】基于 LlamaIndex 和Qwen1.5搭建基于本地知识库的问答机器人

【RAG实践】基于 LlamaIndex 和Qwen1.5搭建基于本地知识库的问答机器人

时间:2024-03-20 23:58:19浏览次数:31  
标签:RAG 基于 text 模型 LlamaIndex embedding import query model

什么是RAG

LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。

RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。

一个典型的RAG的例子:

图片

这里面主要包括包括三个基本步骤:

  1. 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。

2. 检索 — 根据问题和 chunks 的相似度检索相关文档片段。

3. 生成 — 以检索到的上下文为条件,生成问题的回答。

通义千问1.5

Qwen1.5版本年前开源了包括0.5B、1.8B、4B、7B、14B和72B在内的六种大小的基础和聊天模型,同时,也开源了量化模型。不仅提供了Int4和Int8的GPTQ模型,还有AWQ模型,以及GGUF量化模型。为了提升开发者体验,Qwen1.5的代码合并到Hugging Face Transformers中,开发者现在可以直接使用transformers>=4.37.0 而无需 trust_remote_code。

与之前的版本相比,Qwen1.5显著提升了聊天模型与人类偏好的一致性,并且改善了它们的多语言能力。所有模型提供了统一的上下文长度支持,支持32K上下文。还有,基础语言模型的质量也有所小幅改进。

Qwen1.5全系列统一具备强大的链接外部系统能力(agent/RAG/Tool-use/Code-interpreter)。

正因为Qwen1.5作为中文LLM率先合入了Transformers,我们也可以使用LLaMaIndex的原生HuggingFaceLLM来加载模型。

LLaMaIndex

LlamaIndex 是一个基于 LLM 的应用程序的数据框架,受益于上下文增强。 这种LLM系统被称为RAG系统,代表“检索增强生成”。LlamaIndex 提供了必要的抽象,可以更轻松地摄取、构建和访问私有或特定领域的数据,以便将这些数据安全可靠地注入 LLM 中,以实现更准确的文本生成。

图片

GTE文本向量

文本表示是自然语言处理(NLP)领域的核心问题, 其在很多NLP、信息检索的下游任务中发挥着非常重要的作用。近几年, 随着深度学习的发展,尤其是预训练语言模型的出现极大的推动了文本表示技术的效果, 基于预训练语言模型的文本表示模型在学术研究数据、工业实际应用中都明显优于传统的基于统计模型或者浅层神经网络的文本表示模型。这里, 我们主要关注基于预训练语言模型的文本表示。

图片

GTE-zh模型使用retromae初始化训练模型,之后利用两阶段训练方法训练模型:第一阶段利用大规模弱弱监督文本对数据训练模型,第二阶段利用高质量精标文本对数据以及挖掘的难负样本数据训练模型。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型算法岗技术与面试交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:技术交流

最佳实践

环境配置与安装

  1. python 3.10及以上版本

  2. pytorch 1.12及以上版本,推荐2.0及以上版本

  3. 建议使用CUDA 11.4及以上

本文主要演示的模型推理代码可在魔搭社区免费实例PAI-DSW的配置下运行(显存24G) :

第一步:点击模型右侧Notebook快速开发按钮,选择GPU环境

图片

第二步:新建Notebook

图片

安装依赖库

!pip install llama-index llama-index-llms-huggingface ipywidgets
!pip install transformers -U
import logging
import sys

logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))


from IPython.display import Markdown, display
import torch
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.prompts import PromptTemplate
from modelscope import snapshot_download
from llama_index.core.base.embeddings.base import BaseEmbedding, Embedding
from abc import ABC
from typing import Any, List, Optional, Dict, cast
from llama_index.core import (
    VectorStoreIndex,
    ServiceContext,
    set_global_service_context,
    SimpleDirectoryReader,
)

加载大语言模型

因为Qwen本次支持了Transformers,使用HuggingFaceLLM加载模型,模型为(Qwen1.5-4B-Chat)

# Model names 
qwen2_4B_CHAT = "qwen/Qwen1.5-4B-Chat"

selected_model = snapshot_download(qwen2_4B_CHAT)

SYSTEM_PROMPT = """You are a helpful AI assistant.
"""

query_wrapper_prompt = PromptTemplate(
    "[INST]<<SYS>>\n" + SYSTEM_PROMPT + "<</SYS>>\n\n{query_str}[/INST] "
)

llm = HuggingFaceLLM(
    context_window=4096,
    max_new_tokens=2048,
    generate_kwargs={"temperature": 0.0, "do_sample": False},
    query_wrapper_prompt=query_wrapper_prompt,
    tokenizer_name=selected_model,
    model_name=selected_model,
    device_map="auto",
    # change these settings below depending on your GPU
    model_kwargs={"torch_dtype": torch.float16},
)

加载数据:导入测试数据

!mkdir -p 'data/xianjiaoda/'
!wget 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/rag/xianjiaoda.md' -O 'data/xianjiaoda/xianjiaoda.md'
documents = SimpleDirectoryReader("/mnt/workspace/data/xianjiaoda/").load_data()
documents

构建Embedding类

加载GTE模型,使用GTE模型构造Embedding类

embedding_model = "iic/nlp_gte_sentence-embedding_chinese-base"
class ModelScopeEmbeddings4LlamaIndex(BaseEmbedding, ABC):
    embed: Any = None
    model_id: str = "iic/nlp_gte_sentence-embedding_chinese-base"

    def __init__(
            self,
            model_id: str,
            **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        try:
            from modelscope.models import Model
            from modelscope.pipelines import pipeline
            from modelscope.utils.constant import Tasks
            # 使用modelscope的embedding模型(包含下载)
            self.embed = pipeline(Tasks.sentence_embedding, model=self.model_id)

        except ImportError as e:
            raise ValueError(
                "Could not import some python packages." "Please install it with `pip install modelscope`."
            ) from e

    def _get_query_embedding(self, query: str) -> List[float]:
        text = query.replace("\n", " ")
        inputs = {"source_sentence": [text]}
        return self.embed(input=inputs)['text_embedding'][0].tolist()

    def _get_text_embedding(self, text: str) -> List[float]:
        text = text.replace("\n", " ")
        inputs = {"source_sentence": [text]}
        return self.embed(input=inputs)['text_embedding'][0].tolist()

    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        texts = list(map(lambda x: x.replace("\n", " "), texts))
        inputs = {"source_sentence": texts}
        return self.embed(input=inputs)['text_embedding'].tolist()

    async def _aget_query_embedding(self, query: str) -> List[float]:
        return self._get_query_embedding(query)

建设索引

加载数据后,基于文档对象列表(或节点列表),建设他们的index,就可以方便的检索他们。

embeddings = ModelScopeEmbeddings4LlamaIndex(model_id=embedding_model)
service_context = ServiceContext.from_defaults(embed_model=embeddings, llm=llm)
set_global_service_context(service_context)

index = VectorStoreIndex.from_documents(documents)

查询和问答

搭建基于本地知识库的问答引擎

query_engine = index.as_query_engine()
response = query_engine.query("西安交大是由哪几个学校合并的?")
print(response)

标签:RAG,基于,text,模型,LlamaIndex,embedding,import,query,model
From: https://blog.csdn.net/2201_75499313/article/details/136892034

相关文章

  • 通讯录实现!(基于顺序表的项目)
    一.通讯录实现要求c语言基础要求:结构体、动态内存管理、顺序表、文件操作二、通讯录功能能够保存用户信息、能够增加联系人、删除联系人、查找联系人、修改联系人信息、显示联系人信息三、通讯录实现通讯录实现90%是基于之前的顺序表的,所以想要实现通讯录可以先去看看我有......
  • 基于springboot实现校园管理系统的设计与实现演示【附项目源码+论文说明】
    基于springboot实现校园管理系统的设计与实现演示摘要随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,校园管理系统当然也不能排除在外。校园管理系统是以实际运用为开发背景,运用软件工程原理和开发方法,采用sp......
  • 基于SpringBoot实现旅游网站管理系统项目演示【附项目源码+论文说明】
    基于SpringBoot实现旅游网站管理系统项目演示摘要随着科学技术的飞速发展,各行各业都在努力与现代先进技术接轨,通过科技手段提高自身的优势,旅游网站当然也不能排除在外,随着旅游网站的不断成熟,它彻底改变了过去传统的旅游网站方式,不仅使旅游管理难度变低了,还提升了旅游网站......
  • 基于Springboot的在线装修管理系统(有报告)。Javaee项目,springboot项目。
    演示视频:基于Springboot的在线装修管理系统(有报告)。Javaee项目,springboot项目。项目介绍:采用M(model)V(view)C(controller)三层体系结构,通过Spring+SpringBoot+Mybatis+Vue+Maven+Layui+Elementui来实现。MySQL数据库作为系统数据储存平台,实现了基于B/S结构的Web系统......
  • 基于python+django+Spark的动漫推荐可视化分析系统
    摘 要近年来,随着互联网的蓬勃发展,企事业单位对信息的管理提出了更高的要求。以传统的管理方式已无法满足现代人们的需求。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,随着各行业的不断发展,基于Spark的国漫推荐系统的建设也逐渐进入了信息化的进程。这个系统......
  • 基于springboot的考研资讯交流平台
    摘  要随着现在网络的快速发展,网络的应用在各行各业当中它很快融入到了许多学校的眼球之中,他们利用网络来做这个电商的服务,随之就产生了“考研资讯平台”,这样就让学生考研资讯平台更加方便简单。对于本考研资讯平台的设计来说,它主要是采用java技术。在整个系统的设计当中......
  • 基于cnn卷积神经网络的yolov8动物姿态估计识别(训练+代码)
    往期热门博客项目回顾:计算机视觉项目大集合改进的yolo目标检测-测距测速路径规划算法图像去雨去雾+目标检测+测距项目交通标志识别项目yolo系列-重磅yolov9界面-最新的yolo姿态识别-3d姿态识别深度学习小白学习路线基于CNN(卷积神经网络)的YOLOv8模型在动物姿态......
  • java毕业设计基于微信小程序的中药调理系统
    本系统(程序+源码)带文档lw万字以上  文末可领取本课题的JAVA源码参考系统程序文件列表系统的选题背景和意义随着现代生活节奏的加快,人们对于健康问题越来越关注。在众多保健方式中,中药以其独特的调理作用和较少的副作用受到广泛欢迎。然而,中药的种类繁多,配方复杂,普通人往......
  • STM32 HAL库基于F103系列之异步通信
    硬件资源串口1(PA9/PA10连接在板载USB转串口芯片CH340C上面) 原理图USB转串口硬件部分的原理图 程序设计USART/UART异步通信配置步骤1、配置串口工作参数  HAL_UART_Init()2,串口底层初始化  HAL_UART_MspInit()   配置GPIO、NVIC、CLOCK等3,开启串口异步接......
  • 基于深度学习的人员指纹身份识别算法matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本matlab2022a  3.算法理论概述      指纹识别技术是一种生物特征识别技术,它通过分析人类手指末端皮肤表面的纹路特征来进行身份认证。深度学习是机器学习的一个分支,特别适用于处理大规模高维数据,并在图像识别、语......