首页 > 其他分享 >Pytorch | Tutorial-05 autograd 自动微分

Pytorch | Tutorial-05 autograd 自动微分

时间:2024-03-20 19:24:10浏览次数:32  
标签:05 autograd torch 张量 Pytorch 计算 梯度 backward grad

这是对 Pytorch 官网的 Tutorial 教程的中文翻译。

在训练神经网络时,最常用的算法是反向传播。在该算法中,根据损失函数相对于给定参数的梯度来调整参数(模型权重)。

为了计算这些梯度,PyTorch 有一个名为 torch.autograd 的内置微分引擎。它能自动计算任何计算图的梯度。

考虑最简单的单层神经网络,具有输入 x 、参数 w 和 b 以及一些损失函数。它可以通过以下方式在 PyTorch 中定义:

import torch

x = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

张量、函数和计算图

上述代码定义了以下计算图:

计算图

在这个网络中, w 和 b 是我们需要优化的参数。因此,我们需要能够计算损失函数相对于这些变量的梯度。为此,我们设置这些张量的 requires_grad 属性。

可以在创建张量时设置 requires_grad 的值,或者之后使用 x.requires_grad_(True) 方法设置。

构造张量的计算图的函数实际上是类 Function 的对象。该对象可以完成前向传播和反向传播的函数计算。反向传播函数的声明在张量的 grad_fn 属性中。您可以在文档中找到 Function 的更多信息。

print(f"Gradient function for z = {z.grad_fn}")
print(f"Gradient function for loss = {loss.grad_fn}")

输出:

Gradient function for z = <AddBackward0 object at 0x7f47dfe73310>
Gradient function for loss = <BinaryCrossEntropyWithLogitsBackward0 object at 0x7f47dfe71060>

计算梯度

为了优化神经网络中参数的权重,我们需要计算损失函数相对于参数的导数,即,我们需要 xy 为固定值下的 \(\frac{\partial{loss}}{\partial{w}}\) 和 \(\frac{\partial{loss}}{\partial{b}}\)。为了计算这些导数,我们调用 loss.backward() ,然后通过 w.grad 和 b.grad 获取导数值:

loss.backward()
print(w.grad)
print(b.grad)

输出:

tensor([[0.3313, 0.0626, 0.2530],
        [0.3313, 0.0626, 0.2530],
        [0.3313, 0.0626, 0.2530],
        [0.3313, 0.0626, 0.2530],
        [0.3313, 0.0626, 0.2530]])
tensor([0.3313, 0.0626, 0.2530])
  • 我们只能获取计算图中叶节点的 grad 属性,其中 requires_grad 属性设置为 True 。对于我们图中的所有其他节点,梯度将不可用。
  • 出于性能原因,我们只能在给定图上使用 backward 执行一次梯度计算。如果我们需要在同一个图上执行多个 backward 调用,则需要将 retain_graph=True 传递给 backward 调用。

禁用梯度追踪

默认情况下,所有具有 requires_grad=True 的张量都会跟踪其计算历史并支持梯度计算。然而,在某些情况下,我们不需要这样做,例如,当我们训练了模型并且只想将其应用于某些输入数据时,即我们只想将网络用于前向计算。

第一种方法:用 torch.no_grad() 块包围代码来停止跟踪计算:

z = torch.matmul(x, w)+b
print(z.requires_grad)

with torch.no_grad():
    z = torch.matmul(x, w)+b
print(z.requires_grad)

输出:

True
False

第二种方法:在张量上使用 detach() 方法:

z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)
False

您可能想要禁用梯度跟踪的原因有:

  • 将神经网络中的某些参数标记为冻结参数
  • 仅进行前向计算时加快计算速度,因为对不跟踪梯度的张量进行计算会更有效

有关计算图的更多信息

从概念上讲,autograd 将所有数据(张量)和执行操作(以及生成的新张量)的记录保存在由 Function 对象组成的有向无环图 (DAG) 中。在 DAG 中,叶子是输入张量,根是输出张量。通过从根到叶追踪该计算图,您可以使用链式法则自动计算梯度。

在前向传播计算中,autograd 同时做两件事:

  • 运行请求的操作来计算输出张量
  • 在 DAG 中维护操作的梯度函数

当在 DAG 根上调用 .backward() 时,后向传播计算开始。 autograd 会:

  • 计算每个 .grad_fn 的梯度,
  • 将它们累积到相应张量的 .grad 属性中
  • 使用链式法则,一直传播到叶张量。

DAG 在 PyTorch 中是动态的。需要注意的是:计算图是从头开始重新创建的;每次 .backward() 调用后,autograd 开始填充新计算图。这正是允许您在模型中使用控制语句的原因;如果需要,您可以在每次迭代时更改形状、大小和操作。

可选阅读:张量梯度和雅可比积

大部分情况下,我们有一个标量损失函数,并且需要计算某些参数的梯度。但在某些情况下,输出函数是任意张量。在这种情况下,PyTorch 允许您计算所谓的雅可比积,而不是实际的梯度。

对于向量函数 \(\vec{y}=f(\vec{x})\) ,其中 \(\vec{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle\) 和 \(\vec{y}=\left\langle y_{1}, \ldots, y_{m}\right\rangle\) , \(\vec{y}\) 相对于 \(\vec{x}\) 的梯度为由雅可比矩阵给出:

\[J=\left(\begin{array}{ccc}\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\\vdots & \ddots & \vdots \\\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}\end{array}\right) \]

PyTorch 允许您计算给定输入向量 \(v=\left(v_{1} \ldots v_{m}\right)\) 的雅可比积 \(v^{T} \cdot J\),而不是计算雅可比矩阵本身。这是通过使用 \(v\) 作为参数调用 backward 来实现的。考虑到我们要计算乘积,因此 \(v\)  的大小应该与原始张量的大小相同:

inp = torch.eye(4, 5, requires_grad=True)
out = (inp+1).pow(2).t()
out.backward(torch.ones_like(out), retain_graph=True)
print(f"First call\n{inp.grad}")
out.backward(torch.ones_like(out), retain_graph=True)
print(f"\nSecond call\n{inp.grad}")
inp.grad.zero_()
out.backward(torch.ones_like(out), retain_graph=True)
print(f"\nCall after zeroing gradients\n{inp.grad}")

输出:

First call
tensor([[4., 2., 2., 2., 2.],
        [2., 4., 2., 2., 2.],
        [2., 2., 4., 2., 2.],
        [2., 2., 2., 4., 2.]])

Second call
tensor([[8., 4., 4., 4., 4.],
        [4., 8., 4., 4., 4.],
        [4., 4., 8., 4., 4.],
        [4., 4., 4., 8., 4.]])

Call after zeroing gradients
tensor([[4., 2., 2., 2., 2.],
        [2., 4., 2., 2., 2.],
        [2., 2., 4., 2., 2.],
        [2., 2., 2., 4., 2.]])

请注意,当我们使用相同的参数第二次调用 backward 时,梯度的值是不同的。发生这种情况是因为在进行 backward 传播时,PyTorch 会累积梯度值,即:将计算出的梯度值添加到计算图所有叶节点的 grad 属性中。如果要计算正确的梯度,则需要先将 grad 属性清零。在训练中,优化器可以帮助我们做到这一点。

以前我们调用不带参数的 backward() 函数。这本质上相当于调用 backward(torch.tensor(1.0)) ,这是对于标量函数的情况(例如神经网络训练期间的损失)计算梯度的有效方法。

标签:05,autograd,torch,张量,Pytorch,计算,梯度,backward,grad
From: https://www.cnblogs.com/shaojunjie0912/p/18085890

相关文章

  • Pytorch | Tutorial-03 数据转换
    这是对Pytorch官网的Tutorial教程的中文翻译。数据并不总是以训练机器学习算法所需的最终处理形式出现,我们使用转换来对数据执行一些操作并使其适合训练。所有TorchVision数据集都有两个参数:用于修改特征的 transform 和用于修改标签的 target_transform。接受包......
  • Pytorch | Tutorial-04 构建神经网络模型
    这是对Pytorch官网的Tutorial教程的中文翻译。神经网络由对数据执行操作的层/模块组成。torch.nn命名空间提供了构建您自己的神经网络所需的所有构建块。PyTorch中的每个模块都是nn.Module的子类。神经网络本身就是一个模块,由其他模块(层)组成。这种嵌套结构允许轻松构......
  • Day05
    数据类型语言要求变量的使用要严格符合规定,所有变量都必须先定义后才能使用弱语言语言Java的数据类型分为两大类基本类型(primitivetype)数值类型引用类型(referencetype)![](C:\Users\ASUS\Pictures\Screenshots\屏幕截图2024-03-10105408.png)www.baidu.com......
  • Springboot笔记-05
    1.Springboot的热部署spring为开发者提供了一个名为spring-boot-devtools的模块来使SpringBoot应用支持热部署,提高开发者的开发效率,无需手动重启SpringBoot应用。在pom文件加入依赖<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-b......
  • Pytorch | Tutorial-01 张量
    Tensors张量张量是一种特殊的数据结构,与数组和矩阵非常相似。在PyTorch中,我们使用张量对模型的输入和输出以及模型的参数进行编码。张量与NumPy的ndarray类似,不同之处在于张量可以在GPU或其他硬件加速器上运行。事实上,张量和NumPy数组通常可以共享相同的底层内存,从而......
  • 050_Windows下定时删除日志文件
    目录定时删除脚本计划任务定时执行定时删除脚本remauther:zhyqremdate:20220930rem******dellogStart******@echooff::删除三月前的日志forfiles/p"C:\powerShovel\api\logs"/m*.log-d-90/c"cmd/cdel/f@path"@echoonrem******dellogEnd******......
  • 050_Microsoft Azure平台实验
    目录Azure平台简介Azure机器学习实验观察数据集导入数据总结数据集数据上传至Azure机器学习实验创建新的Azure机器学习实验分割数据集模型训练选择预测项模型评分模型计算结果的可视化模型评估Azure平台简介Azure机器学习实验观察数据集导入数据总结数据集数据上......
  • 蓝桥杯 2013 国 AC 网络寻路 第四届国赛 洛谷P8605
    [蓝桥杯2013国AC]网络寻路题目描述XXX国的一个网络使用若干条线路连接若干个节点。节点间的通信是双向的。某重要数据包,为了安全起见,必须恰好被转发两次到达目的地。该包可能在任意一个节点产生,我们需要知道该网络中一共有多少种不同的转发路径。源地址和目标地......
  • 【高等几何】05 - 射影几何
    上一篇我们用一组结合公理在射影空间的直线上构建了代数域(体),并且将射影空间的元素用齐次坐标彻底代数化。本篇开始就让这个代数工具大显身手,进一步深入探究射影几何的诸多性质。1.射影几何1.1射影几何与交比大部分教材绕开了结合公理,直接用线性空间定理射影几何,在方......
  • java数据结构与算法刷题-----LeetCode1005. K 次取反后最大化的数组和(这就不是简单题)
    java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846卷来卷去,把简单题都卷成中等题了文章目录1.排序后从小到大取负2.hash表从小到大排序,省掉排序(这就是为什......