首页 > 其他分享 >不平衡数据集cifar100训练模型,提取特征保存为mat文件

不平衡数据集cifar100训练模型,提取特征保存为mat文件

时间:2024-03-19 13:34:08浏览次数:39  
标签:__ 提取 mat self torch num features cifar100 out

主要分两步走,先训练好模型,保存模型,然后再读取模型,保存特征

①训练模型,保存模型

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data.sampler import WeightedRandomSampler
import torch.nn.functional as F
import os


# 定义基本的ResNet块
class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion * planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class ResNet32(nn.Module):
    def __init__(self, block, num_blocks, num_classes=100, feature_size=4096):
        super(ResNet32, self).__init__()
        self.in_planes = 16

        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(16)
        self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(64 * block.expansion, feature_size)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward_features(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.avgpool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        features = out
        # print("Shape of features in forward_features:", features.shape)  # 添加这行代码来打印特征的形状
        # print("Shape of fc weight matrix:", self.fc.weight.shape)

        return out, features

    def forward(self, x):
        return self.forward_features(x)[0]  # 返回 forward_features 的第一个输出



def ResNet32_100():
    return ResNet32(BasicBlock, [5, 5, 5], num_classes=100, feature_size=4096)  # 添加 feature_size 参数



# 定义不平衡采样器
class ImbalancedDatasetSampler(torch.utils.data.sampler.Sampler):
    def __init__(self, dataset, indices=None, num_samples=None):
        self.indices = list(range(len(dataset))) if indices is None else indices
        self.num_samples = len(self.indices) if num_samples is None else num_samples
        label_to_count = {}
        for idx in self.indices:
            label = self._get_label(dataset, idx)
            if label in label_to_count:
                label_to_count[label] += 1
            else:
                label_to_count[label] = 1
        weights = [1.0 / label_to_count[self._get_label(dataset, idx)]
                   for idx in self.indices]
        self.weights = torch.DoubleTensor(weights)

    def _get_label(self, dataset, idx):
        return dataset.targets[idx]

    def __iter__(self):
        return (self.indices[i] for i in torch.multinomial(self.weights, self.num_samples, replacement=True))

    def __len__(self):
        return self.num_samples


# 数据预处理
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])

# 加载CIFAR-100数据集
trainset = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test)

# 创建不平衡采样器
train_indices = torch.randperm(len(trainset)).tolist()
num_samples = int(len(train_indices) * 0.1)  # 10%的样本被标签为100
imbalanced_sampler = ImbalancedDatasetSampler(trainset, indices=train_indices[:num_samples], num_samples=len(trainset))

# 创建数据加载器
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, sampler=imbalanced_sampler, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)

# 初始化模型、损失函数和优化器
net = ResNet32_100()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)

# 将模型转移到GPU(如果可用)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)

# 训练模型
best_prec1 = 0

def main():
    global best_prec1
    for epoch in range(170):  # 你可以调整这个值来增加训练轮数
        net.train()
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data[0].to(device), data[1].to(device)
            optimizer.zero_grad()
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            if i % 100 == 99:  # 每100个小批量打印一次损失
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 100))
                running_loss = 0.0

        # 评估模型
        prec1 = validate(testloader, net, criterion, device)
        print("epoch:{},prec1:{}".format(epoch, prec1))

        # 保存模型
        is_best = prec1 > best_prec1
        best_prec1 = max(prec1, best_prec1)
        save_checkpoint({
            'epoch': epoch + 1,
            'state_dict': net.state_dict(),
            'best_prec1': best_prec1,
            'optimizer': optimizer.state_dict(),
        }, is_best,epoch+1,prec1)  # 传递 is_best 参数

    print('Finished Training')

def save_checkpoint(state, is_best, epoch, accuracy):
    path = 'checkpoint/ours/'
    if not os.path.exists(path):
        os.makedirs(path)
    filename = str(epoch) + '_' + str(accuracy) + '.pth.tar'  # 将整数转换为字符串
    if is_best:
        torch.save(state, os.path.join(path, filename))  # 修正保存路径

def validate(val_loader, model, criterion, device):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for data in val_loader:
            inputs, labels = data[0].to(device), data[1].to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    acc = 100 * correct / total
    return acc

if __name__ == '__main__':
    main()

②加载模型,提取特征,保存特征

import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import scipy.io as sio

# 加载已保存的 ResNet32 模型
from Test1 import ResNet32_100


def load_model(model, checkpoint_path):
    checkpoint = torch.load(checkpoint_path)
    model.load_state_dict(checkpoint['state_dict'])
    return model

# 将 CIFAR-100 数据集加载到数据加载器中
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])

trainset = datasets.CIFAR100(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=False)

testset = datasets.CIFAR100(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False)


# 定义一个函数来提取特征并保存为.mat文件
def extract_features(model, dataloader):
    model.eval()
    features_list = []
    with torch.no_grad():
        for images, _ in dataloader:
            outputs, features = model.forward_features(images)
            features_list.append(features)
        features = torch.cat(features_list, dim=0)
        print("Shape of features:", features.shape)  # 打印特征的形状
    return features

if __name__ == '__main__':
    # 加载已保存的模型
    model = ResNet32_100()
    model = load_model(model, '/home/zy/pycharm/project/temp/MetaSAug_1/test/checkpoint/ours/138_33.67.pth.tar')


    # 提取特征 train
    # features = extract_features(model, trainloader)

    # 提取特征 test
    features = extract_features(model, testloader)

    # 将特征保存为.mat文件
    features_dict = {'features': features.cpu().numpy()}
    filename='Test_138_33.67'
    sio.savemat('/home/zy/pycharm/project/temp/MetaSAug_1/test/matFile/'+filename+'.mat', features_dict)

    # 打印.mat文件的大小
    print("The size of the .mat file is:", features.shape[0], "x", features.shape[1])

重要打印指令

# 添加这行代码来打印特征的形状
# print("Shape of features in forward_features:", features.shape)
# print("Shape of fc weight matrix:", self.fc.weight.shape)
# 打印.mat文件的大小
print("The size of the .mat file is:", features.shape[0], "x", features.shape[1])

标签:__,提取,mat,self,torch,num,features,cifar100,out
From: https://www.cnblogs.com/ZarkY/p/18082567

相关文章