题目链接:园丁的烦恼
挺经典的题目,转化成二维数点去做
这玩意和常规的偏序计数问题有区别:
转化为求 \(a \le x \le b \ \&\& \ c \le y \le d\) 的数量,这种就别想着拆来拆去了,这种权值类带偏序计数类问题,是经典的可差性问题,我们计:\(ans(x,l,r)\) 表示 \(t\le x,l\le y\le r\) 的数量,那么原问题就可以差分了:\(=ans(b,c,d)-ans(a-1,c,d)\),这玩意可能你一开始会想直接 \(cdq\) 分治,因为统计的 \(l\le y \le r\) 也可以看做可差性问题,\(pre[r]-pre[l-1]\),\(pre[x]\ 为 \le x\ 的权值数量\)。这个直接权值树状数组就行,所以只需要 \(cdq\) 保证 \(x\) 的序与 \(y\) 的插入序即可,注意离散化。当然这个复杂度是 \(O(n\log^2{(n+m)})\),而且中间离散化需要包括了 \(x\) 和 \(y\),实质上应该为 \(2 \times n+4\times m\) 个需要离散化点,常数大:
cdq分治 参照代码
#include <bits/stdc++.h>
// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
#define isPbdsFile
#ifdef isPbdsFile
#include <bits/extc++.h>
#else
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>
#endif
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
}
template <typename T>
T lowBit(T x)
{
return x & -x;
}
template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
}
template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
}
template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
}
template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
}
template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
}
template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
}
template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
}
template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three;
bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
}
T3() { one = tow = three = 0; }
T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
};
template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
}
template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
}
struct Hash
{
static uint64_t splitmix64(uint64_t x)
{
x += 0x9e3779b97f4a7c15;
x = (x ^ x >> 30) * 0xbf58476d1ce4e5b9;
x = (x ^ x >> 27) * 0x94d049bb133111eb;
return x ^ x >> 31;
}
static size_t get(const uint64_t x)
{
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
template <typename T>
size_t operator()(T x) const
{
return get(std::hash<T>()(x));
}
template <typename F, typename S>
size_t operator()(pair<F, S> p) const
{
return get(std::hash<F>()(p.first)) ^ std::hash<S>()(p.second);
}
};
constexpr int N = 2e6 + 10;
struct Query
{
int x, y;
int l, r; //如果是查找y的限制范围
int id;
} qu[N];
inline bool cmpX(const Query& a, const Query& b)
{
if (a.x != b.x)return a.x < b.x;
return a.y < b.y;
}
inline bool cmpY(const Query& a, const Query& b)
{
return a.y < b.y;
}
int ans[N];
set<int> ord;
hash2<int, int, Hash> mp;
int n, m, mx;
int bit[N];
int cnt;
int ansIdx;
inline void add(int x, const int val)
{
while (x <= mx)bit[x] += val, x += lowBit(x);
}
inline int query(int x)
{
int res = 0;
for (; x; x -= lowBit(x))res += bit[x];
return res;
}
inline int query(const int l, const int r)
{
return query(r) - query(l - 1);
}
inline void cdq(const int L, const int R)
{
const int mid = L + R >> 1;
if (L == R)return;
cdq(L, mid), cdq(mid + 1, R);
stable_sort(qu + L, qu + mid + 1, cmpY), stable_sort(qu + mid + 1, qu + R + 1, cmpY);
int l = L;
forn(r, mid+1, R)
{
const auto [x,y,queryL,queryR,id] = qu[r];
while (l <= mid and qu[l].y <= y)
{
if (!qu[l].id)add(qu[l].y, 1);
l++;
}
if (id)
{
ans[abs(id)] += id / abs(id) * query(queryL, queryR);
}
}
forn(i, L, l-1)if (!qu[i].id)add(qu[i].y, -1);
}
inline void solve()
{
read(n, m);
forn(i, 1, n)
{
int x, y;
read(x, y), ord.insert(x), ord.insert(y);
qu[++cnt] = Query(x, y, 0, 0, 0);
}
forn(i, 1, m)
{
int x1, y1, x2, y2;
read(x1, y1, x2, y2);
ord.insert(x1 - 1), ord.insert(x2);
ord.insert(y1), ord.insert(y2);
++ansIdx;
qu[++cnt] = Query(x2, y2, y1, y2, ansIdx);
qu[++cnt] = Query(x1 - 1, y2, y1, y2, -ansIdx);
}
for (const auto x : ord)mp[x] = ++mx;
forn(i, 1, cnt)
{
auto& [x,y,l,r,id] = qu[i];
x = mp[x], y = mp[y];
if (id)l = mp[l], r = mp[r];
}
stable_sort(qu + 1, qu + cnt + 1, cmpX);
cdq(1, cnt);
forn(i, 1, ansIdx)write(endl, ans[i]);
}
signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}
如果带修,那么显然这么做很合适,但这题不带修,我们可以使用不带修更优秀的二维数点,就是离线序列扫描线。不过这里显然和值域有关,我们对 \(x\) 所在值域离线扫描线,常规的就是按照 \(x\) 挂载修改和查询,从最小的 \(x\) 访问,更新修改和查询,每次修改就是 \(y\) 的加入,查找就是 \(l\le y \le r\) 的数量,所以只需要按照 \(x\) 排序就行。然后查询按照上述说的可差性问题拆分贡献,常规离散化 \(y\) 以后跑关于 \(x\) 的序列扫描线即可,这里稍微注意下的是由于题目是 \(\le\) 非严格序,所以当修改和查询的 \(x\) 相同的时,我们需要把修改放在查询的 \(query\) 之前。当然你也可以分开做扫描线,每次先更新修改扫描线,再更新对应的查询扫描线上的挂载点。这样的复杂度显然是 \(O((n+m)\log{n})\)
离线扫描线做法
#include <bits/stdc++.h>
// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
#define isPbdsFile
#ifdef isPbdsFile
#include <bits/extc++.h>
#else
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>
#endif
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
}
template <typename T>
T lowBit(T x)
{
return x & -x;
}
template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
}
template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
}
template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
}
template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
}
template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
}
template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
}
template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
}
template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three;
bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
}
T3() { one = tow = three = 0; }
T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
};
template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
}
template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
}
struct Hash
{
static uint64_t splitmix64(uint64_t x)
{
x += 0x9e3779b97f4a7c15;
x = (x ^ x >> 30) * 0xbf58476d1ce4e5b9;
x = (x ^ x >> 27) * 0x94d049bb133111eb;
return x ^ x >> 31;
}
static size_t get(const uint64_t x)
{
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
template <typename T>
size_t operator()(T x) const
{
return get(std::hash<T>()(x));
}
template <typename F, typename S>
size_t operator()(pair<F, S> p) const
{
return get(std::hash<F>()(p.first)) ^ std::hash<S>()(p.second);
}
};
constexpr int N = 2e6 + 10;
struct Query
{
int x, y;
int l, r;
int id;
bool operator<(const Query& other) const
{
if (x != other.x)return x < other.x;
return abs(id) < abs(other.id);
}
} node[N];
int cnt, ansCnt;
int ans[N];
set<int> ord;
hash2<int, int, Hash> mp;
int n, m, mx;
int bit[N];
inline void add(int x)
{
for (; x <= mx; x += lowBit(x))bit[x]++;
}
inline int query(int x)
{
int res = 0;
for (; x; x -= lowBit(x))res += bit[x];
return res;
}
inline int query(const int l, const int r)
{
return query(r) - query(l - 1);
}
inline void solve()
{
read(n, m);
forn(i, 1, n)
{
int x, y;
read(x, y);
ord.insert(y);
node[++cnt] = Query(x, y, 0, 0, 0);
}
forn(i, 1, m)
{
++ansCnt;
int x1, y1, x2, y2;
read(x1, y1, x2, y2);
ord.insert(y1), ord.insert(y2);
node[++cnt] = Query(x2, 0, y1, y2, ansCnt);
node[++cnt] = Query(x1 - 1, 0, y1, y2, -ansCnt);
}
for (const int x : ord)mp[x] = ++mx;
forn(i, 1, cnt)
{
auto& [x,y,l,r,id] = node[i];
if (id)l = mp[l], r = mp[r];
else y = mp[y];
}
sortArr(node, cnt);
forn(i, 1, cnt)
{
const auto [x,y,l,r,id] = node[i];
if (!id)add(y);
else
{
const int val = id / abs(id);
ans[abs(id)] += val * query(l, r);
}
}
forn(i, 1, ansCnt)write(endl, ans[i]);
}
signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}