首页 > 其他分享 >P2163 [SHOI2007] 园丁的烦恼 题解

P2163 [SHOI2007] 园丁的烦恼 题解

时间:2024-03-17 15:33:39浏览次数:26  
标签:typedef return int 题解 P2163 template SHOI2007 include define

题目链接:园丁的烦恼

挺经典的题目,转化成二维数点去做

这玩意和常规的偏序计数问题有区别:

转化为求 \(a \le x \le b \ \&\& \ c \le y \le d\) 的数量,这种就别想着拆来拆去了,这种权值类带偏序计数类问题,是经典的可差性问题,我们计:\(ans(x,l,r)\) 表示 \(t\le x,l\le y\le r\) 的数量,那么原问题就可以差分了:\(=ans(b,c,d)-ans(a-1,c,d)\),这玩意可能你一开始会想直接 \(cdq\) 分治,因为统计的 \(l\le y \le r\) 也可以看做可差性问题,\(pre[r]-pre[l-1]\),\(pre[x]\ 为 \le x\ 的权值数量\)。这个直接权值树状数组就行,所以只需要 \(cdq\) 保证 \(x\) 的序与 \(y\) 的插入序即可,注意离散化。当然这个复杂度是 \(O(n\log^2{(n+m)})\),而且中间离散化需要包括了 \(x\) 和 \(y\),实质上应该为 \(2 \times n+4\times m\) 个需要离散化点,常数大:

cdq分治 参照代码
#include <bits/stdc++.h>

// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")

#define isPbdsFile

#ifdef isPbdsFile

#include <bits/extc++.h>

#else

#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>

#endif

using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};

template <typename T>
int disc(T* a, int n)
{
    return unique(a + 1, a + n + 1) - (a + 1);
}

template <typename T>
T lowBit(T x)
{
    return x & -x;
}

template <typename T>
T Rand(T l, T r)
{
    static mt19937 Rand(time(nullptr));
    uniform_int_distribution<T> dis(l, r);
    return dis(Rand);
}

template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
    return (a % b + b) % b;
}

template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
    a %= c;
    T1 ans = 1;
    for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
    return modt(ans, c);
}

template <typename T>
void read(T& x)
{
    x = 0;
    T sign = 1;
    char ch = getchar();
    while (!isdigit(ch))
    {
        if (ch == '-')sign = -1;
        ch = getchar();
    }
    while (isdigit(ch))
    {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    x *= sign;
}

template <typename T, typename... U>
void read(T& x, U&... y)
{
    read(x);
    read(y...);
}

template <typename T>
void write(T x)
{
    if (typeid(x) == typeid(char))return;
    if (x < 0)x = -x, putchar('-');
    if (x > 9)write(x / 10);
    putchar(x % 10 ^ 48);
}

template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
    write(x), putchar(c);
    write(c, y...);
}


template <typename T11, typename T22, typename T33>
struct T3
{
    T11 one;
    T22 tow;
    T33 three;

    bool operator<(const T3 other) const
    {
        if (one == other.one)
        {
            if (tow == other.tow)return three < other.three;
            return tow < other.tow;
        }
        return one < other.one;
    }

    T3() { one = tow = three = 0; }

    T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
    {
    }
};

template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
    if (x < y)x = y;
}

template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
    if (x > y)x = y;
}

struct Hash
{
    static uint64_t splitmix64(uint64_t x)
    {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ x >> 30) * 0xbf58476d1ce4e5b9;
        x = (x ^ x >> 27) * 0x94d049bb133111eb;
        return x ^ x >> 31;
    }

    static size_t get(const uint64_t x)
    {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }

    template <typename T>
    size_t operator()(T x) const
    {
        return get(std::hash<T>()(x));
    }

    template <typename F, typename S>
    size_t operator()(pair<F, S> p) const
    {
        return get(std::hash<F>()(p.first)) ^ std::hash<S>()(p.second);
    }
};

constexpr int N = 2e6 + 10;

struct Query
{
    int x, y;
    int l, r; //如果是查找y的限制范围
    int id;
} qu[N];

inline bool cmpX(const Query& a, const Query& b)
{
    if (a.x != b.x)return a.x < b.x;
    return a.y < b.y;
}

inline bool cmpY(const Query& a, const Query& b)
{
    return a.y < b.y;
}

int ans[N];
set<int> ord;
hash2<int, int, Hash> mp;
int n, m, mx;
int bit[N];
int cnt;
int ansIdx;

inline void add(int x, const int val)
{
    while (x <= mx)bit[x] += val, x += lowBit(x);
}

inline int query(int x)
{
    int res = 0;
    for (; x; x -= lowBit(x))res += bit[x];
    return res;
}

inline int query(const int l, const int r)
{
    return query(r) - query(l - 1);
}

inline void cdq(const int L, const int R)
{
    const int mid = L + R >> 1;
    if (L == R)return;
    cdq(L, mid), cdq(mid + 1, R);
    stable_sort(qu + L, qu + mid + 1, cmpY), stable_sort(qu + mid + 1, qu + R + 1, cmpY);
    int l = L;
    forn(r, mid+1, R)
    {
        const auto [x,y,queryL,queryR,id] = qu[r];
        while (l <= mid and qu[l].y <= y)
        {
            if (!qu[l].id)add(qu[l].y, 1);
            l++;
        }
        if (id)
        {
            ans[abs(id)] += id / abs(id) * query(queryL, queryR);
        }
    }
    forn(i, L, l-1)if (!qu[i].id)add(qu[i].y, -1);
}

inline void solve()
{
    read(n, m);
    forn(i, 1, n)
    {
        int x, y;
        read(x, y), ord.insert(x), ord.insert(y);
        qu[++cnt] = Query(x, y, 0, 0, 0);
    }
    forn(i, 1, m)
    {
        int x1, y1, x2, y2;
        read(x1, y1, x2, y2);
        ord.insert(x1 - 1), ord.insert(x2);
        ord.insert(y1), ord.insert(y2);
        ++ansIdx;
        qu[++cnt] = Query(x2, y2, y1, y2, ansIdx);
        qu[++cnt] = Query(x1 - 1, y2, y1, y2, -ansIdx);
    }
    for (const auto x : ord)mp[x] = ++mx;
    forn(i, 1, cnt)
    {
        auto& [x,y,l,r,id] = qu[i];
        x = mp[x], y = mp[y];
        if (id)l = mp[l], r = mp[r];
    }
    stable_sort(qu + 1, qu + cnt + 1, cmpX);
    cdq(1, cnt);
    forn(i, 1, ansIdx)write(endl, ans[i]);
}

signed int main()
{
    // MyFile
    Spider
    //------------------------------------------------------
    // clock_t start = clock();
    int test = 1;
    //    read(test);
    // cin >> test;
    forn(i, 1, test)solve();
    //    while (cin >> n, n)solve();
    //    while (cin >> test)solve();
    // clock_t end = clock();
    // cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}

如果带修,那么显然这么做很合适,但这题不带修,我们可以使用不带修更优秀的二维数点,就是离线序列扫描线。不过这里显然和值域有关,我们对 \(x\) 所在值域离线扫描线,常规的就是按照 \(x\) 挂载修改和查询,从最小的 \(x\) 访问,更新修改和查询,每次修改就是 \(y\) 的加入,查找就是 \(l\le y \le r\) 的数量,所以只需要按照 \(x\) 排序就行。然后查询按照上述说的可差性问题拆分贡献,常规离散化 \(y\) 以后跑关于 \(x\) 的序列扫描线即可,这里稍微注意下的是由于题目是 \(\le\) 非严格序,所以当修改和查询的 \(x\) 相同的时,我们需要把修改放在查询的 \(query\) 之前。当然你也可以分开做扫描线,每次先更新修改扫描线,再更新对应的查询扫描线上的挂载点。这样的复杂度显然是 \(O((n+m)\log{n})\)

离线扫描线做法
#include <bits/stdc++.h>

// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")

#define isPbdsFile

#ifdef isPbdsFile

#include <bits/extc++.h>

#else

#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>

#endif

using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};

template <typename T>
int disc(T* a, int n)
{
    return unique(a + 1, a + n + 1) - (a + 1);
}

template <typename T>
T lowBit(T x)
{
    return x & -x;
}

template <typename T>
T Rand(T l, T r)
{
    static mt19937 Rand(time(nullptr));
    uniform_int_distribution<T> dis(l, r);
    return dis(Rand);
}

template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
    return (a % b + b) % b;
}

template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
    a %= c;
    T1 ans = 1;
    for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
    return modt(ans, c);
}

template <typename T>
void read(T& x)
{
    x = 0;
    T sign = 1;
    char ch = getchar();
    while (!isdigit(ch))
    {
        if (ch == '-')sign = -1;
        ch = getchar();
    }
    while (isdigit(ch))
    {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    x *= sign;
}

template <typename T, typename... U>
void read(T& x, U&... y)
{
    read(x);
    read(y...);
}

template <typename T>
void write(T x)
{
    if (typeid(x) == typeid(char))return;
    if (x < 0)x = -x, putchar('-');
    if (x > 9)write(x / 10);
    putchar(x % 10 ^ 48);
}

template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
    write(x), putchar(c);
    write(c, y...);
}


template <typename T11, typename T22, typename T33>
struct T3
{
    T11 one;
    T22 tow;
    T33 three;

    bool operator<(const T3 other) const
    {
        if (one == other.one)
        {
            if (tow == other.tow)return three < other.three;
            return tow < other.tow;
        }
        return one < other.one;
    }

    T3() { one = tow = three = 0; }

    T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
    {
    }
};

template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
    if (x < y)x = y;
}

template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
    if (x > y)x = y;
}

struct Hash
{
    static uint64_t splitmix64(uint64_t x)
    {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ x >> 30) * 0xbf58476d1ce4e5b9;
        x = (x ^ x >> 27) * 0x94d049bb133111eb;
        return x ^ x >> 31;
    }

    static size_t get(const uint64_t x)
    {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }

    template <typename T>
    size_t operator()(T x) const
    {
        return get(std::hash<T>()(x));
    }

    template <typename F, typename S>
    size_t operator()(pair<F, S> p) const
    {
        return get(std::hash<F>()(p.first)) ^ std::hash<S>()(p.second);
    }
};

constexpr int N = 2e6 + 10;

struct Query
{
    int x, y;
    int l, r;
    int id;

    bool operator<(const Query& other) const
    {
        if (x != other.x)return x < other.x;
        return abs(id) < abs(other.id);
    }
} node[N];

int cnt, ansCnt;
int ans[N];
set<int> ord;
hash2<int, int, Hash> mp;
int n, m, mx;
int bit[N];

inline void add(int x)
{
    for (; x <= mx; x += lowBit(x))bit[x]++;
}

inline int query(int x)
{
    int res = 0;
    for (; x; x -= lowBit(x))res += bit[x];
    return res;
}

inline int query(const int l, const int r)
{
    return query(r) - query(l - 1);
}

inline void solve()
{
    read(n, m);
    forn(i, 1, n)
    {
        int x, y;
        read(x, y);
        ord.insert(y);
        node[++cnt] = Query(x, y, 0, 0, 0);
    }
    forn(i, 1, m)
    {
        ++ansCnt;
        int x1, y1, x2, y2;
        read(x1, y1, x2, y2);
        ord.insert(y1), ord.insert(y2);
        node[++cnt] = Query(x2, 0, y1, y2, ansCnt);
        node[++cnt] = Query(x1 - 1, 0, y1, y2, -ansCnt);
    }
    for (const int x : ord)mp[x] = ++mx;
    forn(i, 1, cnt)
    {
        auto& [x,y,l,r,id] = node[i];
        if (id)l = mp[l], r = mp[r];
        else y = mp[y];
    }
    sortArr(node, cnt);
    forn(i, 1, cnt)
    {
        const auto [x,y,l,r,id] = node[i];
        if (!id)add(y);
        else
        {
            const int val = id / abs(id);
            ans[abs(id)] += val * query(l, r);
        }
    }
    forn(i, 1, ansCnt)write(endl, ans[i]);
}

signed int main()
{
    // MyFile
    Spider
    //------------------------------------------------------
    // clock_t start = clock();
    int test = 1;
    //    read(test);
    // cin >> test;
    forn(i, 1, test)solve();
    //    while (cin >> n, n)solve();
    //    while (cin >> test)solve();
    // clock_t end = clock();
    // cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}

标签:typedef,return,int,题解,P2163,template,SHOI2007,include,define
From: https://www.cnblogs.com/Athanasy/p/18078656

相关文章

  • P3302 [SDOI2013] 森林 题解
    题目链接:森林有意思的树上可持久化线段树变形题,建议先看这个:P2633Countonatree题解对于本题而言,我们重新阐述树上可持久化线段树的核心思想,对于点路径/边路径上的第\(k\)大问题,我们使用树上前缀和问题的思想,将其转化为可差性问题:一条路径上的权值线段树可以拆分为几棵权......
  • 贪心算法题解
    前言大家好,我是jiantaoyab,这篇文章将给大家介绍贪心算法和贪心算法题目的练习和解析,贪心算法的本质就是每一个阶段都是局部最优,从而实现全局最优。我们在做题的同时,不仅要把题目做出来,还要有严格的证明。柠檬水找零在柠檬水摊上,每一杯柠檬水的售价为5美元。顾客排队......
  • codeforce Round 934 div2 个人题解(A~C)
    A.DestroyingBridges时间限制:1秒内存限制:256兆输入:标准输入输出:标准输出有$n$个岛屿,编号为$1,2,…,n$。最初,每对岛屿都由一座桥连接。因此,一共有$\frac{n(n-1)}{2}$座桥。Everule住在岛屿$1$上,喜欢利用桥梁访问其他岛屿。Dominater有能力摧毁最多$k$座......
  • AtCoder-abc345_f题解
    题意简述给定一个无向图。你要在其中选出一些边,使得选出的边所构成的图中,度数为奇数的点有\(K\)个。如果可以,输出选了哪些边,否则输出-1。思路首先在选一条边时,边两端点度数的奇偶性一定都会改变,即要么都变为奇数,要么两个点的奇偶性交换过来,要么都变为偶数。这三种情况时满足......
  • P2633 Count on a tree 题解
    题目链接:Countonatree大概可以认为是树上主席树的板子我在之前的某些题解提到了,主席树一般来说有两个基本功能:可持久化功能,可以选择回退或者新增版本。对于可差性问题,可以有更好的转化为前缀和做法,常见的问题为权值类型问题。在树上的路径第\(k\)大,显然如果我们能......
  • 【洛谷 P8661】[蓝桥杯 2018 省 B] 日志统计 题解(滑动窗口+优先队列+双端队列+集合)
    [蓝桥杯2018省B]日志统计题目描述小明维护着一个程序员论坛。现在他收集了一份“点赞”日志,日志共有NNN行。其中每一行的格式是tsid,表示在......
  • 【洛谷 P8602】[蓝桥杯 2013 省 A] 大臣的旅费 题解(图论+深度优先搜索+树的直径+链式
    [蓝桥杯2013省A]大臣的旅费题目描述很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同......
  • [CF1943C] Tree Compass 题解
    不会2300,完蛋了/lh题目链接题目分析容易想到先求出直径,然后以直径中点为圆心画\({d\over2}+O(1)\)个圆。具体地,设直径点数为\(d\)。当\(d\)为奇数时,上述构造需要\(d+1\over2\)次操作;当\(d\)为偶数时,上述构造需要\({d\over2}+1\)次操作。尝试证明上述......
  • AT_abc345_d 题解
    是个逆天搜索。最开始:爆搜,启动!然后TLE到飞起。赛后:我【数据删除】这么简单的吗?!dfs每个位置,试着把没放过的块放到以这个位置为左上角的区域里面。好了没了,就是这么简单!对了记得这个块可以旋转!#include<stdio.h>#include<bits/stdc++.h>#defineN1000010#defineMOD9......
  • 关于nvim插件telescope-fzf-native在windows下未构建的问题解决
    关于nvim插件telescope-fzf-native在windows下未构建的问题解决首先进入文件夹(没有就自己创建注意文件夹名就是telescope-fzf-native.nvim)C:\Users\...\AppData\Local\nvim-data\site\pack\packer\start\telescope-fzf-native.nvim进入此路径的powershell或者cmd命令行,执行......