首页 > 其他分享 >SciTech-Mathmatics-RealAnalysis: Cantor-Schröder-Bernstein Theorem

SciTech-Mathmatics-RealAnalysis: Cantor-Schröder-Bernstein Theorem

时间:2024-03-12 22:11:23浏览次数:24  
标签:lonely kappa descendent point der Cantor Theorem Schr Bernstein

  1. Cornell: https://www.cs.cornell.edu/courses/cs2800/2017fa/lectures/lec14-cantor.html
  2. UCLA: https://web.cs.ucla.edu/~palsberg/course/cs232/papers/bernstein.pdf
  3. https://artofproblemsolving.com/wiki/index.php/Schroeder-Bernstein_Theorem
  4. https://www.whitman.edu/mathematics/higher_math_online/section04.09.html#:~:text=Theorem 4.9.1 (Schröder-Bernstein Theorem) If A ¯ ≤,B such that g (b 1) %3D a.

Schroeder-Bernstein Theorem
The Schroeder-Bernstein Theorem(sometimes called the Cantor-Schroeder-Bernstein Theorem)
is a result from set theory, named for Ernst Schröder and Felix Bernstein.
Informally, it implies that if two cardinalities are both less than or equal to each other, then they are equal.

More specifically, the theorem states that if \(A\) and \(B\) are sets, and there are injections \(f: A \to B\) and \(g : B \to A\), then there is a bijection \(h : A \to B\).

The proof of the theorem does not depend on the axiom of choice, but only on the classical Zermelo-Fraenkel axioms.

Contents
1 Proof
2 Problems
2.1 Introductory
2.1.1 Problem 1
2.1.2 Problem 2
2.2 Intermediate
2.2.1 Problem 1
3 See Also
Proof
We call an element \(b\) of \(B\) lonely if there is no element \(a \in A\) such that \(f(a) = b\). We say that an element \(b_1\) of \(B\) is a descendent of an element \(b_0\) of \(B\) if there is a natural number \(n\) (possibly zero) such that \(b_1 = (f \circ g)^n (b_0)\).

We define the function \(h: A \to B\) as follows: [h(a) = \begin{cases} g^{-1}(a), &\text{if } f(a) \text{ is the descendent of a lonely point,} \ f(a) &\text{otherwise.} \end{cases}] Note that \(f(a)\) cannot be lonely itself. If \(f(a)\) is the descendent of a lonely point, then \(f(a) = f \circ g (b)\) for some \(b\); since \(g\) is injective, the element \(g^{-1}(a)\) is well defined. Thus our function \(h\) is well defined. We claim that it is a bijection from \(A\) to \(B\).

We first prove that \(h\) is surjective. Indeed, if \(b \in B\) is the descendent of a lonely point, then \(h(g(b)) = b\); and if \(b\) is not the descendent of a lonely point, then \(b\) is not lonely, so there is some \(a \in A\) such that \(f(a) = b\); by our definition, then, \(h(a) = b\). Thus \(h\) is surjective.

Next, we prove that \(h\) is injective. We first note that for any \(a \in A\), the point \(h(a)\) is a descendent of a lonely point if and only if \(f(a)\) is a descendent of a lonely point. Now suppose that we have two elements \(a_1, a_2 \in A\) such that \(h(a_1) = h(a_2)\). We consider two cases.

If \(f(a_1)\) is the descendent of a lonely point, then so is \(f(a_2)\). Then \(g^{-1}(a_1) = h(a_1) = h(a_2) = g^{-1}(a_2)\). Since \(g\) is a well defined function, it follows that \(a_1 = a_2\).

On the other hand, if \(f(a_1)\) is not a descendent of a lonely point, then neither is \(f(a_2)\). It follows that \(f(a_1) = h(a_1) = h(a_2) = f(a_2)\). Since \(f\) is injective, \(a_1 = a_2\).

Thus \(h\) is injective. Since \(h\) is surjective and injective, it is bijective, as desired. \(\blacksquare\)

Problems
The Schroeder-Bernstein Theorem can be used to solve many cardinal arithmetic problems. For example, one may wish to show \(|S|=\kappa\) for some cardinal \(\kappa\). One strategy is to find sets \(A,B\) such that \(|A|=|B|=\kappa\) with injections from \(A\) to \(S\) and \(S\) to \(B\), thus concluding that \(|A|=|S|=|B|=\kappa\). More generally, the Schroeder-Bernstein Theorem shows that the relation \(|A|\leq|B|\) between cardinals \(|A|\) and \(|B|\) defined by "there is an injection \(f:A\rightarrow B\)" is a partial-order on the class of cardinals.

Introductory
Problem 1
Show that \(\mathbb{Q}\) is countable.

Problem 2
Let \(\kappa\) satisfy \(\kappa\cdot\kappa=\kappa\). Show that \(\kappa^{\kappa}=2^{\kappa}\).

Intermediate
Problem 1
We say a set of reals \(O\subseteq\mathbb{R}\) is open if for all \(r\in O\), there is an open interval \(I\) satisfying \(r\in I\subseteq O\). Show that the following sets are equal in cardinality:

\(\mathbb{R}\)
\(2^{\aleph_{0}}\)
\(\{O\subset\mathbb{R}\mid O\text{ is open}\}\)
\(\{f:\mathbb{R}\rightarrow\mathbb{R}\mid f\text{ is continuous}\}\)
See Also
Categories: Set theoryTheorems

标签:lonely,kappa,descendent,point,der,Cantor,Theorem,Schr,Bernstein
From: https://www.cnblogs.com/abaelhe/p/18069464

相关文章

  • blender 改变场景,视图背景色
    打开blender软件,点击右上方【视图着色方式】展开图标。2在视图着色方式页面中,点击【背景/后台】选项的【视图】项。3点击【视图】选项下的颜色框,在弹出的颜色轮盘中,选择所要更改的颜色,即可。......
  • 【PR】UC-NERF: NEURAL RADIANCE FIELD FOR UNDERCALIBRATED MULTI-VIEW CAMERAS IN A
    【简介】这篇文章的作者来自中科大、北大武汉人工智能研究院、大疆和上海科大,投稿到了ICLR2024会议,已接收。UC,表示undercalibrated,意味着标定不准。本文提出UC-NeRF用于解决标定不够好的多相机配置的新视角合成方法。首先,作者提出一种基于层的颜色校正方法,以纠正不同图像区域......
  • AtCoder Beginner Contest 344 A-G 题解
    AtCoderBeginnerContest344A-SpoilerQuestion删除两个|之间的字符Solution按照题意模拟即可Code#include<bits/stdc++.h>usingnamespacestd;intmain(){strings;cin>>s;stringp1,p2;for(inti=0;i<s.size();i++){......
  • Total Commander(TC)批量切换标签的方法
      2人赞同了该文章TC能否批量切换标签?比如:工作场景下,打开多个与工作场景相关的文件夹标签;学习场景下,需要打开多个与学习场景相关的文件夹标签。这些文件夹标签分别组成【工作标签组】和【学习标签组】。能否实现【工作标签组】和【学习标签组】之间的切换呢?答案是肯......
  • 5-1Dataset和DataLoader
    Pytorch通常使用Dataset和DataLoader这两个工具类来构建数据管道。Dataset定义了数据集的内容,它相当于一个类似列表的数据结构,具有确定的长度,能够用索引获取数据集中的元素。而DataLoader定义了按batch加载数据集的方法,它是一个实现了__iter__方法的可迭代对象,每次迭代输出一个......
  • Toyota Programming Contest 2024#3(AtCoder Beginner Contest 344)
    C先预处理出三个数组能拼出的数,存放到map中。查询的时候只需要看这个数是否出现在map里即可。时间复杂度\(O(n^3\logv+Q\logv)\),\(n\leq100\),\(\logv\)是map的时间复杂度。#include<bits/stdc++.h>usingnamespacestd;#defineintlonglongconstintN=3e......
  • Blender与在线渲染农场的结合
    ​在数字艺术和三维设计的世界里,Blender软件因其强大的功能和灵活性而广受欢迎。然而,随着项目复杂性的增加,渲染时间也随之增长,成为艺术家和设计师面临的一大挑战。在线渲染农场的出现,为这一问题提供了革命性的解决方案。本文深入探讨了Blender与在线渲染农场结合的优势,如何加速创......
  • AtCoder Beginner Contest 344
    B-Delimiter难度:⭐题目大意把一个数组倒序输出;解题思路没啥好说的;神秘代码#include<bits/stdc++.h>#defineintlonglong#defineIOSios::sync_with_stdio(false);cin.tie(0);cout.tie(0);#defineendl'\n'usingnamespacestd;constintN=4e6+......
  • Unity3D Shader事项法线贴图功能详解
    Unity3D它提供了丰富的功能和工具,使开发人员能够轻松创建出色的游戏和应用程序。其中Shader是Unity3D中非常重要的一部分,它可以帮助开发人员实现各种视觉效果,包括法线贴图功能。对啦!这里有个游戏开发交流小组里面聚集了一帮热爱学习游戏的零基础小白,也有一些正在从事游戏开发的技......
  • StringBuilder
    StringBuilder的介绍问题:为什么要学习StringBuilder?回答:因为StringBuilder可以大幅度提升字符串的操作效率场景:如果今后涉及到字符串的拼接操作,拼接次数过于频繁,请一定要使用StringBuilder介绍:StringBuilder是可变的字符序列StringBuilder......