首页 > 其他分享 >单匝不同形状的线圈(四边形)

单匝不同形状的线圈(四边形)

时间:2024-03-12 20:00:25浏览次数:20  
标签:单匝 线圈 路径 平面 四边形 截面

1.【默认坐标轴基于XY平面,将其更改为YZ平面】

 

 2.【在yz平面建立线圈截面,单击画矩形】

 

 3.【双击修改参数】

 4.【画路径,绘图平面改回xy,修改视角为Top】

 5.

 6.选中截面和路径,点击快捷键

 

 7.绘制成为单匝闭合线圈

 

标签:单匝,线圈,路径,平面,四边形,截面
From: https://www.cnblogs.com/woyaobiye/p/18069115

相关文章

  • html四边形的的框怎么编写,html知识点之利用css四边形切角并且加上边框
    前言这几个月做了很多前端工作,其中一个需求还是蛮头疼,UI给的图上面的四边形是一个带斜边的,直接用背景图可以实现,但是会出现各种布局的问题,比如内容太大了,边框不会跟着扩大,废话不多说,这里写一些如何利用css话四边形带有斜边,并且给斜边加边框,在这之前,先简单说一下需要用到的函数li......
  • 单调队列优化DP&斜率优化&四边形不等式
    在本文中,我们将通过一道题来浅谈DP优化三大妈。P3195[HNOI2008]玩具装箱-洛谷|计算机科学教育新生态(luogu.com.cn)对于这种类型的题目,我们一般可以转化为如下形式:那么,$val(i,j)$又通常分为两种情况:其值仅与$i,j$中的一个有关。其值与$i,j$两者都有关。单调队列......
  • 问题:梯形图从最左边母线开始,触点不能在线圈右侧
    问题:梯形图从最左边母线开始,触点不能在线圈右侧A.正确B.错误参考答案如图所示......
  • dp优化-决策单调性 / 四边形不等式
    前言这种优化我以前“听”过了很多次,但是好像都没学会qwq。四边形不等式:对于二元组\(w_{x,y}\),如果在定义域上任取四个点\(a\leb\lec\led\),满足:\[w_{a,b}+w_{c,d}\gew_{a,c}+w_{b,d}\]则称\(w_{x,y}\)满足四边形不等式。你会想这鬼东西怎么记?反正我也不想记。......
  • <学习笔记> 四边形不等式
    四边形不等式对于任意的\(l_1\lel_2\ler_1\ler_2\),满足\(w(l_1,r_1)+w(l_2,r_2)\lew(l_1,r_2)+w(l_2,r_1)\)。若等号恒成立,则称函数\(w\)为四边形恒等式。如何证明若满足\(w(l,r-1)+w(l+1,r)\leqw(l,r)+w(l+1,r-1)\),则\(w\)满足四边形不等式。决策单调......
  • 复杂一点的四边形不等式和邮局
    四边形不等式不仅在一维的线性dp中可以使用,在二维dp中也是很不错的东西这个二维dp不局限于区间dp,虽然四边形不等式优化石子合并是很经典的东西但是这种四边形不等式我不打算推导,而是直接背结论,因为我觉得知道推导过程对我的作用不是很大而且麻烦在区间dp问题中,这样的方程\(f[i]......
  • 诗人小G和四边形不等式
    对于线性的dp\(f[i]=min(f[j]+val(i,j))\)或者说是大致的转移方程可以写成这样的dp,时间复杂度大概是\(O(n^2)\)能否优化主要取决于\(val(i,j)\)的内容和\(j\)的范围假如\(j\)的范围是一个单调向后移动的窗口,只要\(val(i,j)\)能够用多项式表达出来,那就是可以斜率优化或者单调队......
  • 【学习笔记】决策单调性与四边形不等式
    Itst-决策单调性与四边形不等式学习笔记。这方面是真的一点不会啊。学点东西吧apj。约定对于\(n\timesm\)的矩阵\(A\),定义:子矩阵\(A_{[i_1,i_2,\cdots,i_k],[j_1,j_2,\cdots,j_l]}\)为矩阵\(A\)中第\(i_1,i_2,\cdots,i_k\)行和第\(j_1,j_2,\cdots......
  • css 背景样式 梯形/平行四边形
    绘制这种不规则的背景图形,目前我的思路是使用伪元素伪元素的优点在于不用添加新的元素实现平行效果使用了css transform:skew();具体代码如下{position:relative;padding-left:12px;color:#2187FF;background:#14395c;border-im......
  • 诗人小G (恶心的四边形不等式证明)
    前言:没有前言(快累死了,不想写)。solution:题目传送门设$f_i$为第$i$句时最小的不协调度。\[f_i=f_j+\left|s_i-s_j+i-j-1-L\right|^P\]\[f_i=f_j+\left|s_i+i-(s_j+j)-(L+1)\right|^P\]令$w_{i,j}=(s_i+i)-(s_j+j)-(L+1)$。\[f_i=f_j+\left|w_{i,j}\righ......