实际上这道题不需要先排序再求gcd,因为无论是哪两项之前作差,都不会影响最后的gcd的结果。
因为公差是从a2-a1开始算的,因此i=1时要特殊处理,不能把a1-0计入贡献,否则会算出错误的gcd。
即作差时不要加上a1-0,统计最值时不要漏掉a1
#include <iostream> #include <stdio.h> #include <algorithm> #include <string> #include <cmath> #define For(i, j, n) for(int i = j ; i <= n ; ++i) using namespace std; const int N = 1e5 + 5; int n, maxn = -1, minn = 1e9 + 1; int gcd(int a, int b) { return b?gcd(b, a % b):a; } int main() { scanf("%d", &n); int x = 0, y = 0, new_d = 0, old_d = 0, ans = 0; scanf("%d", &y); maxn = max(maxn, y); minn = min(minn, y); for(int i = 2; i <= n; i++) { scanf("%d", &x); new_d = abs(x - y); y = x; ans = gcd(ans, gcd(old_d, new_d)); old_d = new_d; maxn = max(maxn, x); minn = min(minn, x); } if(ans == 0) printf("%d\n", n); else printf("%d\n", (maxn - minn) / ans + 1); return 0; }
标签:a1,gcd,蓝桥,2019,include,等差数列 From: https://www.cnblogs.com/smartljy/p/18063271