首页 > 其他分享 >m基于深度学习网络的花朵种类识别系统matlab仿真,包含GUI界面

m基于深度学习网络的花朵种类识别系统matlab仿真,包含GUI界面

时间:2024-03-09 19:34:10浏览次数:31  
标签:花朵 get GUI 识别系统 hObject Dataset 分类器 handles matlab

1.算法仿真效果

matlab2022a仿真结果如下:

 

 

2.算法涉及理论知识概要

       随着人工智能技术的飞速发展,深度学习作为其中的重要分支,在计算机视觉领域取得了显著的成果。花朵种类识别作为植物分类学的一个子领域,具有广泛的应用前景,如生态保护、园艺设计、植物教育等。传统的花朵种类识别方法主要依赖于手工特征和分类器,但受限于特征表达能力的不足,其识别性能往往有限。基于深度学习网络的花朵种类识别系统能够自动学习花朵图像的高层次特征,有效提升了识别的准确性和鲁棒性。

 

       基于深度学习的花朵种类识别系统主要依赖于卷积神经网络(Convolutional Neural Networks, CNN)技术。该系统通过训练一个深度学习模型,使其能够从输入的花朵图像中提取特征并进行分类,最终实现对不同种类花朵的自动识别。

 

基于深度学习网络的花朵种类识别系统通常包括数据预处理、特征提取和分类器三个部分。

 

数据预处理:数据预处理是深度学习中的重要步骤,包括图像缩放、裁剪、归一化等操作,以使得输入数据符合网络的要求。对于花朵图像,常见的预处理操作包括将图像缩放到统一大小、进行颜色空间转换(如RGB转灰度)、归一化像素值到[0,1]范围等。

 

特征提取:特征提取是花朵种类识别的核心步骤。通过训练深度卷积神经网络(如VGG、ResNet、Inception等),网络能够自动学习到花朵图像的高层次特征。这些特征对于不同种类的花朵具有很好的区分性,能够有效提升识别的准确性。

 

分类器:分类器用于将提取到的特征映射到具体的花朵种类上。常用的分类器有Softmax分类器、支持向量机(SVM)等。在深度学习网络中,Softmax分类器通常被集成在全连接层之后,用于输出每个类别的概率分布。Softmax函数的定义为:

 

        整个网络模型通过反向传播算法更新权重参数,最小化损失函数(如交叉熵损失Cross-Entropy Loss):

 

 

 

其中,N是样本数量,y_ij 是真实标签(one-hot编码),p_ij 是预测概率。

 

      通过迭代训练,模型逐渐学会从图像中抽取区分不同花朵种类的有效特征,从而提高识别准确率。在实际应用中,还会涉及更多的细节,比如正则化防止过拟合、批量归一化加速训练收敛、数据增强增加模型泛化能力等技术手段。

 

3.MATLAB核心程序

 

function edit6_Callback(hObject, eventdata, handles)
% hObject    handle to edit6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
% Hints: get(hObject,'String') returns contents of edit6 as text
%        str2double(get(hObject,'String')) returns contents of edit6 as a double
 
 
% --- Executes during object creation, after setting all properties.
function edit6_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called
 
% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end
 
 
% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
Name1   = get(handles.edit7, 'String');
NEpochs = str2num(get(handles.edit8, 'String'));
NMB     = str2num(get(handles.edit9, 'String'));
LR      = str2num(get(handles.edit10, 'String'));
Rate    = str2num(get(handles.edit11, 'String'));
 
 
% 使用 imageDatastore 加载图像数据集
Dataset = imageDatastore(Name1, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 将数据集分割为训练集、验证集和测试集
[Training_Dataset, Validation_Dataset, Testing_Dataset] = splitEachLabel(Dataset, Rate, (1-Rate)/2, (1-Rate)/2);
% 加载预训练的 GoogleNet 网络
load googlenet.mat
 
 
% 获取输入层的大小
Input_Layer_Size = net.Layers(1).InputSize(1:2);
 
% 将图像数据集调整为预训练网络的输入尺寸
Resized_Training_Dataset   = augmentedImageDatastore(Input_Layer_Size ,Training_Dataset);
Resized_Validation_Dataset = augmentedImageDatastore(Input_Layer_Size ,Validation_Dataset);
Resized_Testing_Dataset    = augmentedImageDatastore(Input_Layer_Size ,Testing_Dataset);

 

  

 

标签:花朵,get,GUI,识别系统,hObject,Dataset,分类器,handles,matlab
From: https://www.cnblogs.com/51matlab/p/18063184

相关文章

  • 学习unigui【23】uniDBGrid的使用摘要
    Unidbgrid自动调整列宽UniDBGrid1->ClientEvents->ExtEvents[Ext.data.Store[store]]addstore.loadfn:functionstore.load(sender,records,successful,eOpts){sender.grid.columnManager.columns.forEach(function(col){col.autoSize()})}UniDBGrid1.......
  • MATLAB简单美化
    听着音乐......
  • MATLAB----遗传算法及Simulink延时模块实例
    clctic%%参数初始化maxgen=100;%进化代数,即迭代次数,初始预定值选为100sizepop=200;%种群规模,初始预定值选为100pcross=0.9;%交叉概率选择,0和1之间,一般取0.9pmutation=0.01;%变异概率选择,0和1之间,一般取0.01individuals=struct('fitness',zeros(1,sizepop),'chrom',[]);%种群......
  • m基于深度学习网络的瓜果种类识别系统matlab仿真,带GUI界面
    1.算法仿真效果matlab2022a仿真结果如下:    2.算法涉及理论知识概要       GoogleNet,又名Inception网络,是Google公司研发的一种深度学习模型,其通过增加网络深度和宽度来提升性能,同时采用了一些创新性的技术来减少计算量和参数数量。GoogleNet的核心思想是通......
  • MATLAB基本使用及SIMULINK建模仿真实验
    这是我总结的操作方法:1) M脚本文件的编写1、新建M-file;2、输入指令;3、保存(注意:保存路径需要与工作路径一致) 2)在SIMULINK中创建系统模型的步骤1、新建一个空白的 模型窗口。2、在SIMULINK模块库浏览器中,将创建系统模型所需要的功能模块用鼠标拖放到新建的模型窗口中......
  • MAC OS :ERROR: Failed to open file '\Users\futantan\Downloads\atguigudb.sql'
    在操作source\Users\futantan\Downloads\atguigudb.sql的时候出现ERROR: Failedtoopenfile'\Users\futantan\Downloads\atguigudb.sql',error:2 解决方案,在对应的路径下开启mysql udandandeMacBook-Pro:mysqlfutantan$mysql-uroot-pEnterpassword:Welcom......
  • NGUI学习笔记4.0
    EventListener和EventTrigger控件自带组件的局限性其实我们常见的复合控件只提供一些简单的事件监听,如按钮有点击抬起的监听,对长按等其他交互方式的事件监听不大支持。NGUI的监听函数给NGUI对象添加Collider,在其挂载的脚本中编写对应的NGUI的函数,在运行时候会通过反射来进行匹......
  • matlab用高斯曲线拟合模型分析疫情数据|附代码数据
    原文链接:http://tecdat.cn/?p=19211最近我们被客户要求撰写关于疫情数据的研究报告,包括一些图形和统计输出。本文用matlab分析疫情数据集 数据源我们检查解压缩的文件。包含:confirmed.csv-确诊病例的时间序列数据deaths.csv-死亡人数的时间序列数据recovered.csv-......
  • matlab教程_台大lecture2
    scriptwriting程序撰写保存为.m运行:F5 保存时候大小写有区别,字母开头注释:% 形成区块:%%(在debug时候很有用),可以分别运行各个部分的内容 debug:设置断点,类似于c语言中的,可以看变量的值Tips:选中后右键可以智能缩进structuredprogramming2.scriptflow:写程序的一些......
  • MATLAB数据挖掘用改进的K-Means(K-均值)聚类算法分析高校学生的期末考试成绩数据
    全文链接:http://tecdat.cn/?p=30832原文出处:拓端数据部落公众号本文首先阐明了聚类算法的基本概念,介绍了几种比较典型的聚类算法,然后重点阐述了K-均值算法的基本思想,对K-均值算法的优缺点做了分析,回顾了对K-均值改进方法的文献,最后在Matlab中应用了改进的K-均值算法对数据进行了......