首页 > 其他分享 >SciTech-Mathmatics-Trigonometric Identities you must remember: 需要记住的三角函数

SciTech-Mathmatics-Trigonometric Identities you must remember: 需要记住的三角函数

时间:2024-02-24 14:22:55浏览次数:29  
标签:cos 12 Identities remember identities equation Trigonometric SciTech sin

Trigonometric Identities (Revision : 1.4)

  1. Trigonometric Identities you must remember

The “big three” trigonometric identities are
\(\large \begin{equation} \sin^{2} t + cos^{2} t = 1 \tag{1} \end{equation}\)
\(\large \begin{equation} \sin(A + B) = \sin A \cos B + \cos A \sin B \tag{2} \end{equation}\)
\(\large \begin{equation} \cos(A + B) = \cos A \cos B − \sin A \sin B \tag{3} \end{equation}\)
Using these we can derive many other identities. Even if we commit the other useful identities to memory, these three will help be sure that our signs are correct, etc.

  1. Two more easy identities

From equation (1) we can generate two more identities. First, divide each term in (1) by \(cos^{2} t\) (assuming it is not zero) to obtain
\(\large \begin{equation} \tan^{2} t + 1 = \sec^{2} t \tag{4} \end{equation}\)
When we divide by \(sin^2 t\) (again assuming it is not zero) we get
\(\large \begin{equation} 1 + cot^{2} t = csc^{2} t \tag{5} \end{equation}\)

  1. Identities involving the difference of two angles

From equations (2) and (3) we can get several useful identities. First, recall that
cos(−t) = cos t, sin(−t) = − sin t. (6)
From (2) we see that
sin(A − B) = sin(A + (−B))
= sin A cos(−B) + cos A sin(−B)
which, using the relationships in (6), reduces to
sin(A − B) = sin A cos B − cos A sin B. (7)
In a similar way, we can use equation (3) to find
which simplifies to
cos(A − B) = cos(A + (−B))
= cos A cos(−B) − sin A sin(−B)
cos(A − B) = cos A cos B + sin A sin B. (8)
Notice that by remembering the identities (2) and (3) you can easily work out the signs in these last two identities.
1
4 Identities involving products of sines and cosines
If we now add equation (2) to equation (7)
sin(A−B) = sinAcosB−cosAsinB +(sin(A+B) = sinAcosB+cosAsinB)
we find
and dividing both sides by 2 we obtain the identity
sin A cos B = 21 sin(A − B) + 12 sin(A + B). (9) In the same way we can add equations (3) and (8)
cos(A−B) = cosAcosB+sinAsinB +(cos(A+B) = cosAcosB−sinAsinB)
sin(A − B) + sin(A + B) = 2 sin A cos B
to get
which can be rearranged to yield the identity
cos A cos B = 21 cos(A − B) + 12 cos(A + B). (10)
Suppose we wanted an identity involving sin A sin B. We can find one by slightly modi- fying the last thing we did. Rather than adding equations (3) and (8), all we need to do is subtract equation (3) from equation (8):
cos(A−B) = cosAcosB+sinAsinB −(cos(A+B) = cosAcosB−sinAsinB)
This gives
or, in the form we prefer,
cos(A − B) − cos(A + B) = 2 sin A sin B
cos(A − B) + cos(A + B) = 2 cos A cos B
sin A sin B = 12 cos(A − B) − 12 cos(A + B). (11) 5 Double angle identities
Now a couple of easy ones. If we let A = B in equations (2) and (3) we get the two identities
sin2A = 2sinAcosA, (12) cos2A = cos2 A−sin2 A. (13)
2

6 Identities for sine squared and cosine squared
If we have A = B in equation (10) then we find
cosAcosB = 12cos(A−A)+12cos(A+A) cos2A = 12cos0+12cos2A.
Simplifying this and doing the same with equation (11) we find the two identities
cos2A = 12(1+cos2A), (14)
sin2A = 12(1−cos2A). (15) 7 Identities involving tangent
Finally, from equations (2) and (3) we can obtain an identity for tan(A + B): tan(A+B)= sin(A+B) = sinAcosB+cosAsinB.
cos(A + B) cos A cos B − sin A sin B
Now divide numerator and denominator by cos A cos B to obtain the identity we wanted:
tan(A+B)= tanA+tanB . (16) 1−tanAtanB
We can get the identity for tan(A − B) by replacing B in (16) by −B and noting that tangent is an odd function:
tan(A−B)= tanA−tanB . (17) 1+tanAtanB
8 Summary
There are many other identities that can be generated this way. In fact, the derivations above are not unique — many trigonometric identities can be obtained many different ways. The idea here is to be very familiar with a small number of identities so that you are comfortable manipulating and combining them to obtain whatever identity you need to.

标签:cos,12,Identities,remember,identities,equation,Trigonometric,SciTech,sin
From: https://www.cnblogs.com/abaelhe/p/18031028

相关文章

  • SciTech-Mathmatics-automatic equation Numbering / \tag{E} / \label{E} / \ref{
    https://discourse.devontechnologies.com/t/numbering-and-tagging-equations-in-mathjax/69524/2IwentaroundincirclestryingtofigureouthowtonumberandtagequationsinMathJaxinDT3.TheMathJaxDocsshowshowtodoautomaticequationnumbering21......
  • SciTech-EECS-PCB电路板设计-使用KiCad进行PCB设计的基本流程
    使用KiCad进行PCB设计的基本流程,2024-02-2314:04KiCad是一款强大的开源PCB设计软件,其设计的大体流程包括:原理图设计及导出网表文件,PCB布局和布线,导出Gerber文件及制板;以下是使用KiCad进行PCB设计的基本步骤:0.安装KiCad:首先,你需要安装KiCad软件。KiCad官方网站下载......
  • SciTech-Mathmatics-FourierSeries: Time Domain and Frequency Domain
    TimeDomainandFrequencyDomainFrequencydomain:measuredbySpectrumAnalysiszerTellsushowproperties(amplitudes)changeoverfrequencies:TimeDomain:measuredbyOscilloscopeTellsushowproperties(suchasAmplitude(Power),Phase,andsoon)......
  • SciTech-BigDataAIML-OpenAI的Sora视频生成 + 档案管理
    如何基于three.js(webgl)引擎架构,实现3D密集架库房,3D档案室(3d机器人取档、机器人盘点、人工查档、设备巡检)https://www.cnblogs.com/yeyunfei/p/18023685前言:这是最好的时代,也是最坏的时代;是充满挑战的时代,也是充满机遇的时代。是科技飞速的时代,也是无限可能的时代。......
  • SciTech-Mathmatics-Multiplication Properties
    https://byjus.com/maths/multiplication/Inmathematics,multiplicationisamethodoffindingtheproductoftwoormorenumbers.Itisoneofthebasicarithmeticoperations,thatweuseineverydaylife.Themajorapplicationwecanseeinmultiplicatio......
  • SciTech-Mathmatics-LinearAlgebra-特征值和特征向量
    1基本定义将\(n\)阶方阵\(M\)分解出如下式的非零n维向量\(v\)作为特征向量和\(\lambda\)作为特征向量;$\largeMv=\lambdav,\v\neq0$上式不仅可以分解出,甚至还可以分解出多个特征向量与特征值;实例:对物体施加作用力F产生运动,运动可以分解到3D空间......
  • SciTech-Mathmatics-UNIQUE FACTORIZATION THEOREM
    SciTech-Mathmatics-UNIQUEFACTORIZATIONTHEOREMElementary_Number_Theory:https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Number_Theory_(Clark)/01%3A_Chapters/1.11%3A_Unique_Factorizationhttps://public.csusm.edu/......
  • SciTech-Physics-The Feynman Lectures on Physics
    https://www.feynmanlectures.caltech.eduCaltech'sDivisionofPhysics,MathematicsandAstronomyandTheFeynmanLecturesWebsitearepleasedtopresentthisonlineeditionofTheFeynmanLecturesonPhysicsFeynman•Leighton•SandsRestoremyview......
  • SciTech-Math-Complex:复数 + Abraham de Moivre French mathematician
    (AbrahamdeMoivre,Frenchmathematician)两个复数乘积的结果:模等于两者模相乘,弧角等于两者弧角相加;\(极坐标\)表示,若:\(\largez_{1}=\rho_{1}(\cos{\theta_{1}}+i*{\sin{\theta_{1}}})\)\(\largez_{2}=\rho_2(\cos{\theta_{1}}+i*\sin{\theta_{2}})\)则:\(......
  • SciTech-BigDataAIML-Model:模型-
    自变量/解释变量:决定因变量/被解释变量的变量。因变量/被解释变量:被自变量/解释变量影响的变量。内生变量:在模型内部被决定的变量。外生变量:独立于模型的其他解释变量的解释变量,模型的其他解释变量的变化不影响该变量的变化,而我们要研究的外生变量的变化反过来会造......