(Abraham de Moivre, French mathematician)
两个复数乘积的结果: 模等于两者模相乘,弧角等于两者弧角相加;
-
\(极坐标\) 表示, 若:
- \(\large z_{1} = \rho_{1}(\cos{\theta_{1}}+i*{\sin{\theta_{1}}})\)
- \(\large z_{2} =\rho_2 (\cos{\theta_{1}}+i*\sin{\theta_{2}})\)
则:
- \(\large z_{1} * z_{2} = \rho_{1} * \rho_2 [\cos{(\theta_{1}+\theta_{2})} + i*\sin{(\theta_{1}+\theta_{2})} ]\)
- $\large z_1 * z_2 = \rho_{1} * \rho_{2} [\cos{(\theta_{1}+\theta_{2})} + i*\sin{(\theta_{1}+\theta_{2})}];
-
\(极坐标\) 表示, 若:
- \(\large z_1 = \rho_{1}∠\theta_{1}, z2=\rho_2∠\theta_{2}\);
则:
\(\large z_{1}*z_{2} = \rho_{1}*\rho_{2}∠(\theta_{1}+\theta_{2})\);
- \(\large z_1 = \rho_{1}∠\theta_{1}, z2=\rho_2∠\theta_{2}\);