首页 > 其他分享 >MIT 6.5840 MapReduce Lab

MIT 6.5840 MapReduce Lab

时间:2024-02-23 17:23:08浏览次数:31  
标签:string err 6.5840 Reduce Lab func worker reply MIT

MapReduce

MapReduce 是一种编程模型,其思想是让程序员通过编写简单的 Map 和 Reduce 程序就能完成分布式系统的任务,而不需要关注分布式的具体细节。

用户自定义的Map函数接受一个 key/value pair 的输入值,然后产生一个中间 key/value pair 值的集合。MapReduce 库把所有具有相同中间 key 值 I 的中间 value 值集合在一起后传递给 Reduce 函数。

用户自定义的 Reduce 函数接受一个中间 key 的值 I 和相关的一个 value 值的集合。Reduce 函数合并这些 value 值,形成一个较小的 value 值的集合。通常来说,每次 Reduce 函数调用只产生 0 或 1 个输出 value 值。通常我们通过一个迭代器把中间 value 值提供给 Reduce 函数,这样我们就可以处理无法全部放入内存中的大量的 value 值的集合(迭代器可看为一个容器,所以数据放入一个容器中,Reduce 函数就从这个容器中取数据即可)。

例如:计算一个大的文档集合中每个单词出现的次数,Map 和 Reduce 伪代码如下:

map(String key, String value) {
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");
}

reduce(String key, Iterator values) {
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));
}

MapReduce 框架原理

论文中描述的 MapReduce 框架的具体原理如下:

MapReduce

当用户程序调用 MapReduce 时,会发生下面一系列动作:

  • 用户程序首先调用的 MapReduce 库将输入文件分成M个数据片度,每个数据片段的大小一般从 16MB 到 64MB (可以通过可选的参数来控制每个数据片段的大小)。然后用户程序在机群中创建大量的程序副本。

  • 这些程序副本中的有一个特殊的程序 master。副本中其它的程序都是 worker 程序,由 master 分配任务。有 M 个 Map 任务和 R 个 Reduce 任务将被分配,master 将一个 Map 任务或 Reduce 任务分配给一个空闲的 worker。

  • 被分配了 map 任务的 worker 程序读取相关的输入数据片段,从输入的数据片段中解析出 key/value pair,然后把 key/value pair 传递给用户自定义的 Map 函数,由 Map函数生成并输出的中间k ey/value pair,并缓存在内存中。

  • 缓存中的 key/value pair 通过分区函数分成 R 个区域,之后周期性的写入到本地磁盘上。缓存的 key/value pair 在本地磁盘上的存储位置将被回传给 master,由 master 负责把这些存储位置再传送给 Reduce worker。

  • 当 Reduce worker 程序接收到 master 程序发来的数据存储位置信息后,使用 RPC 从 Map worker 所在主机的磁盘上读取这些缓存数据。当 Reduce worker 读取了所有的中间数据后,通过对 key 进行排序后使得具有相同 key 值的数据聚合在一起。由于许多不同的 key 值会映射到相同的 Reduce 任务上,因此必须进行排序。如果中间数据太大无法在内存中完成排序,那么就要在外部进行排序。

  • Reduce worker 程序遍历排序后的中间数据,对于每一个唯一的中间 key 值,Reduce worker 程序将这个 key 值和它相关的中间 value 值的集合传递给用户自定义的 Reduce函数。Reduce 函数的输出被追加到所属分区的输出文件。

  • 当所有的 Map 和 Reduce 任务都完成之后,master 唤醒用户程序。在这个时候,在用户程序里的对 MapReduce 调用才返回。

First step

在一开始,目标是至少先让代码跑起来。

首先看懂 mrsequential.go 的逻辑,看懂 coordinator 和 worker 的 rpc 交互流程。然后实现 coordinator 分配任务后 worker 直接把任务打印出来。

worker 通过 rpc 调用 coordinator 的 AssignJob 方法,获取任务,然后直接打印出来。

在 rpc.go 中,定义用到的 rpc 相关的结构体:

type JobType int

const (
    Map JobType = iota
    Reduce
)

// worker ask for a job
type JobArgs struct{}

// the coordinator reply for the job
type JobReply struct {
    JobArgs interface{}
    JobType JobType 
}

coordinator.go

type JobType int

const (
    Map JobType = iota
    Reduce
)

// worker ask for a job
type JobArgs struct{}

// the coordinator reply for the job
type JobReply struct {
    JobArgs interface{}
    JobType JobType
}

func (c *Coordinator) AssignJob(args *JobArgs, reply *JobReply) error {
    if c.assigned < len(c.files) {
        reply.JobArgs = c.files[c.assigned]
        c.assigned++
        reply.JobType = Map
    } else {
        reply.JobType = Reduce
        c.nReduce--
    }
    return nil
}

worker.go

func Worker(mapf func(string, string) []KeyValue,
    reducef func(string, []string) string,
) {
    args := new(JobArgs)
    reply := new(JobReply)
    ok := call("Coordinator.AssignJob", &args, &reply)
    if !ok {
        fmt.Println("call failed!")
        return
    } else {
        switch reply.JobType {
        case Map:
            file := reply.JobArgs
            fmt.Println("Map: ", file)
        case Reduce:
            fmt.Println("Reduce: ", reply.JobArgs)
        }
    }
}

初步实现(暂不考虑worker出现故障、超时以及一些并发引起的问题,先实现成功调用用户 Map 和 Reduce 方法)

定义结构体用于传递 Map 和 Reduce 需要的参数

type MapWorkerArgs struct {
    Files    []string
    WorkerId int // worker id
    NReduce  int // number of reduce workers
}

type ReduceWorkerArgs struct {
    WorkerId int // worker id
}
  • 暂时考虑对整个 AssignJob 加互斥锁,若发现这样加锁不能满足要求再行改进。

  • Map worker 将中间文件的文件名传递给 coordinator。

  • coordinator 将需要 Reduce worker 处理的中间文件的文件名传递给对应的 Reduce worker。

rpc.go

package mr

//
// RPC definitions.
//
// remember to capitalize all names.
//

import (
    "os"
    "strconv"
)

// Add your RPC definitions here.

// the job type enum, Map and Reduce
type JobType int

const (
    Map JobType = iota
    Reduce
)

// worker ask for a job
type JobArgs struct{}

// the coordinator reply for the job
type JobReply struct {
    JobType    JobType
    MapArgs    MapWorkerArgs
    ReduceArgs ReduceWorkerArgs
}

type PassFileNamesArgs struct {
    IntermediateFileNames []string
}

type PassFileNamesReply struct{}

// Cook up a unique-ish UNIX-domain socket name
// in /var/tmp, for the coordinator.
// Can't use the current directory since
// Athena AFS doesn't support UNIX-domain sockets.
func coordinatorSock() string {
    s := "/var/tmp/5840-mr-"
    s += strconv.Itoa(os.Getuid())
    return s
}

coordinator.go

package mr

import (
    "fmt"
    "log"
    "net"
    "net/http"
    "net/rpc"
    "os"
    "sync"
)

type Coordinator struct {
    files           []string
    assigned        int // number of files assigned
    nReduce         int // number of reduce workers
    mapWorkerNum    int // number of map workers created
    reduceWorkerNum int // number of reduce workers created
    // the file names of the intermediate files
    // index i is for the No.i Reduce worker
    intermediateFileNames [][]string
    mutexLock             sync.Mutex
}

// the arguments to pass to the mapWorker
type MapWorkerArgs struct {
    File     string
    WorkerId int // worker id
    NReduce  int // number of reduce workers
}

// the arguments to pass to the reduceWorker
type ReduceWorkerArgs struct {
    WorkerId              int      // worker id
    IntermediateFileNames []string // files for reduce workers to work on
}

// Your code here -- RPC handlers for the worker to call.

func (c *Coordinator) GetJob(args *JobArgs, reply *JobReply) error {
    c.mutexLock.Lock()
    defer c.mutexLock.Unlock()
    if c.assigned < len(c.files) {
        reply.MapArgs.WorkerId = c.mapWorkerNum
        reply.MapArgs.File = c.files[c.assigned]
        reply.MapArgs.NReduce = c.nReduce
        c.mapWorkerNum++
        c.assigned++
        reply.JobType = Map
    } else if c.nReduce > c.reduceWorkerNum {
        reply.JobType = Reduce
        reply.ReduceArgs.WorkerId = c.reduceWorkerNum
        reply.ReduceArgs.IntermediateFileNames = c.intermediateFileNames[c.reduceWorkerNum]
        c.reduceWorkerNum++
    } else {
        fmt.Println("All Reduce workers are already assigned")
    }
    return nil
}

func (c *Coordinator) PassFileNames(args *PassFileNamesArgs, reply *PassFileNamesReply) error {
    c.mutexLock.Lock()
    defer c.mutexLock.Unlock()
    intermediateFileNames := args.IntermediateFileNames
    for i, intermediateFileName := range intermediateFileNames {
        c.intermediateFileNames[i] = append(c.intermediateFileNames[i], intermediateFileName)
    }
    return nil
}

func (c *Coordinator) server() {
    rpc.Register(c)
    rpc.HandleHTTP()
    // l, e := net.Listen("tcp", ":1234")
    sockname := coordinatorSock()
    os.Remove(sockname)
    l, e := net.Listen("unix", sockname)
    if e != nil {
        log.Fatal("listen error:", e)
    }
    go http.Serve(l, nil)
}

// main/mrcoordinator.go calls Done() periodically to find out
// if the entire job has finished.
func (c *Coordinator) Done() bool {
    ret := false

    // Your code here.

    return ret
}

// create a Coordinator.
// main/mrcoordinator.go calls this function.
// nReduce is the number of reduce tasks to use.
func MakeCoordinator(files []string, nReduce int) *Coordinator {
    c := Coordinator{}

    // Your code here.
    c.assigned = 0
    c.files = files
    c.mapWorkerNum = 0
    c.reduceWorkerNum = 0
    c.nReduce = nReduce
    c.intermediateFileNames = make([][]string, nReduce)

    c.server()
    return &c
}

worker.go

package mr

import (
    "encoding/json"
    "fmt"
    "hash/fnv"
    "io"
    "log"
    "net/rpc"
    "os"
    "plugin"
    "sort"
)

// Map functions return a slice of KeyValue.
type KeyValue struct {
    Key   string
    Value string
}

// for sorting by key.
type ByKey []KeyValue

// for sorting by key.
func (a ByKey) Len() int           { return len(a) }
func (a ByKey) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
func (a ByKey) Less(i, j int) bool { return a[i].Key < a[j].Key }

// use ihash(key) % NReduce to choose the reduce
// task number for each KeyValue emitted by Map.
func ihash(key string) int {
    h := fnv.New32a()
    h.Write([]byte(key))
    return int(h.Sum32() & 0x7fffffff)
}

// load the application Map and Reduce functions
// from a plugin file, e.g. ../mrapps/wc.so
func loadPlugin(filename string) (func(string, string) []KeyValue, func(string, []string) string) {
    p, err := plugin.Open(filename)
    if err != nil {
        log.Fatalf("cannot load plugin %v", filename)
    }
    xmapf, err := p.Lookup("Map")
    if err != nil {
        log.Fatalf("cannot find Map in %v", filename)
    }
    mapf := xmapf.(func(string, string) []KeyValue)
    xreducef, err := p.Lookup("Reduce")
    if err != nil {
        log.Fatalf("cannot find Reduce in %v", filename)
    }
    reducef := xreducef.(func(string, []string) string)

    return mapf, reducef
}

func mapWorker(args MapWorkerArgs) {
    nReduce := args.NReduce
    file, err := os.Open(args.File)
    if err != nil {
        log.Fatalf("cannot open %v", args.File)
    }
    content, err := io.ReadAll(file)
    if err != nil {
        log.Fatalf("cannot read %v", args.File)
    }
    file.Close()
    mapf, _ := loadPlugin(os.Args[1])
    kva := mapf(args.File, string(content))
    // divide the key value pairs for each reduce workers
    kvalist := make([][]KeyValue, nReduce)
    intermediateFileNameList := make([]string, nReduce)
    for _, kv := range kva {
        num := ihash(kv.Key) % nReduce // the reduce task number for the KeyValue pair
        kvalist[num] = append(kvalist[num], kv)
    }
    // write the divided key value pairs to disk
    for i, kva := range kvalist {
        intermediateFileName := fmt.Sprintf("mr-%d-%d", args.WorkerId, i)
        intermediateFileNameList[i] = intermediateFileName
        intermediateFile, err := os.Create(intermediateFileName)
        if err != nil {
            log.Fatalf("cannot create %v", intermediateFileName)
        }
        enc := json.NewEncoder(intermediateFile)
        for _, kv := range kva {
            err := enc.Encode(&kv)
            if err != nil {
                log.Fatalf("cannot encode %v", kv)
            }
        }
    }
    // pass the address (file name) of the key value pairs file to the master
    pargs := new(PassFileNamesArgs)
    preply := new(PassFileNamesReply)
    pargs.IntermediateFileNames = intermediateFileNameList
    ok := call("Coordinator.PassFileNames", &pargs, &preply)
    if !ok {
        fmt.Println("call PassFileNames failed")
    }
}

func reduceWorker(args ReduceWorkerArgs) {
    intermediateFileNames := args.IntermediateFileNames
    _, reducef := loadPlugin(os.Args[1])
    intermediate := make([]KeyValue, 0)
    // read key value pairs from intermediate files
    for _, fileName := range intermediateFileNames {
        intermediateFile, err := os.Open(fileName)
        if err != nil {
            log.Fatalf("cannot open %v", fileName)
        }
        dec := json.NewDecoder(intermediateFile)
        for {
            var kv KeyValue
            if err := dec.Decode(&kv); err != nil {
                break
            }
            intermediate = append(intermediate, kv)
        }
        intermediateFile.Close()
    }
    sort.Sort(ByKey(intermediate))
    // create output file
    oname := fmt.Sprintf("mr-out-%v", args.WorkerId)
    ofile, _ := os.Create(oname)
    //
    // call Reduce on each distinct key in intermediate[],
    // and print the result to ofile
    //
    i := 0
    for i < len(intermediate) {
        j := i + 1
        for j < len(intermediate) && intermediate[j].Key == intermediate[i].Key {
            j++
        }
        values := []string{}
        for k := i; k < j; k++ {
            values = append(values, intermediate[k].Value)
        }
        output := reducef(intermediate[i].Key, values)

        // this is the correct format for each line of Reduce output.
        fmt.Fprintf(ofile, "%v %v\n", intermediate[i].Key, output)

        i = j
    }
}

// main/mrworker.go calls this function.
func Worker(mapf func(string, string) []KeyValue,
    reducef func(string, []string) string,
) {
    args := new(JobArgs)
    reply := new(JobReply)
    ok := call("Coordinator.GetJob", &args, &reply)
    if !ok {
        fmt.Println("call GetJob failed!")
        return
    } else {
        switch reply.JobType {
        case Map:
            fmt.Printf("Running Map No.%d\n", reply.MapArgs.WorkerId)
            mapWorker(reply.MapArgs)
        case Reduce:
            fmt.Printf("Running Reduce No.%d\n", reply.ReduceArgs.WorkerId)
            reduceWorker(reply.ReduceArgs)
        }
    }
}

// send an RPC request to the coordinator, wait for the response.
// usually returns true.
// returns false if something goes wrong.
func call(rpcname string, args interface{}, reply interface{}) bool {
    // c, err := rpc.DialHTTP("tcp", "127.0.0.1"+":1234")
    sockname := coordinatorSock()
    c, err := rpc.DialHTTP("unix", sockname)
    if err != nil {
        log.Fatal("dialing:", err)
    }
    defer c.Close()

    err = c.Call(rpcname, args, reply)
    if err == nil {
        return true
    }

    fmt.Println(err)
    return false
}

对故障和超时的 worker 的识别和处理,以及一些并发相关问题的解决

  • 对每一个 worker,coordinator 在分配了任务之后等待10秒,若超出10秒 worker 没有完成任务,就把这个 worker 视为 crashed,将任务分配给其他的 worker。

  • Reduce worker 需要等 Map 全部完成才能开始,在 Map 全部结束之前,利用 channel 阻塞 Reduce worker 的 RPC 调用。

  • 定义两个数组用来显示 map 和 reduce 任务的完成情况。两个 int 类型的变量记录尚未完成的 map 和 reduce 任务的数量,Done 函数通过判断这两个变量来判断 coordinator 任务是否结束。

  • 利用 channel 作为队列,在 coordinator 中定义两个队列,用于存放后面等待分配的 map 和 reduce 任务。分配之后 coordinator 等待10秒,10 秒后任务没有完成就重新把任务放进队列中。

  • coordinator 在完成对 worker 的调用后新建一个 go routine,等待10秒后判断任务是否已经完成。

  • worker 在任务成功完成后调用一个 RPC 函数告知 coordinator 任务已完成。

一些注意事项(踩过的坑)

  • 在编写程序时注意函数和变量以大写开头和以小写开头的区别,RPC 模块涉及到的所有函数,传递的变量(包括结构体内部的变量)开头字母都要大写。

  • 使用 go run -race 来检测并发相关的问题。

  • 注意,worker 在执行完一个任务之后应该继续向 coordinator 请求下一个任务,而不是直接返回。

  • 在 worker 中 sleep 一小段时间来避免所有任务被一个 worker 请求而不能通过 parallelism test。

  • Reduce worker 读取中间文件失败不需要退出,直接尝试读取下一个文件,Map worker 确实可能对于某个 Reduce worker 不产生中间文件。

  • 由于可能会有一些 worker 速度慢,并未 crash 而只是超时,所以会出现一个任务由不同的 worker 先后完成,而向 coordinator 先后多次传递任务完成的信息。所以对于记录剩余未完成的任务的数量的变量,不能收到完成消息后简单减一。

  • 加了锁的函数要注意防止死锁。如 coordinator 的 GetJob 函数中,如果 channel 队列此时为空,会阻塞直到有下一个数进入队列,但若阻塞时互斥锁是 lock 的状态,下一个数进入队列的程序段也加上了锁,将会出现死锁。事实上 GetJob 函数无需加锁。

一个调试了挺久的问题

在快速解决了一些 bug 之后,最后一个问题是 reduce parallelism test 有概率失败,显示“too few parallel reduces”。

我看了一下 test-mr.sh 中的对应内容,也通过随机数给 worker 编号进行了查看,测试失败的原因是只有一个 worker 执行了所有 reduce 进程。

这是为什么呢,我研究了很久,尝试了很多方法都没有找到问题所在。后来我发现每次只有 reduce parallelism test 有可能会出问题,但是 map parallelism test 每次都能正常通过。这让我把问题范围缩小到 map 和 reduce 任务切换处,才终于发现了问题所在。

我的 GetJob 函数是这样写的:

func (c *Coordinator) GetJob(args *JobArgs, reply *JobReply) error {
    // fmt.Println("One worker is asking for job.")
    c.mutexLock.Lock()
    mapJobsNumLeft := c.mapJobsNumLeft
    reduceJobsNumLeft := c.reduceJobsNumLeft
    c.mutexLock.Unlock()
    if mapJobsNumLeft > 0 {
        reply.JobType = Map
        reply.MapArgs.WorkerId = <-c.mapQueue
        reply.MapArgs.File = c.files[reply.MapArgs.WorkerId]
        reply.MapArgs.NReduce = c.nReduce
        // fmt.Printf("Assigned Map Job No.%v\n", reply.MapArgs.WorkerId)
        go c.waitForWorker(Map, reply.MapArgs.WorkerId)
    } else if reduceJobsNumLeft > 0 {
        reply.JobType = Reduce
        reply.ReduceArgs.WorkerId = <-c.reduceQueue
        reply.ReduceArgs.IntermediateFileNames = c.intermediateFileNames[reply.ReduceArgs.WorkerId]
        // fmt.Printf("Assigned Reduce Job No.%v\n", reply.ReduceArgs.WorkerId)
        go c.waitForWorker(Reduce, reply.ReduceArgs.WorkerId)
    } else {
        reply.JobType = Exit
        // fmt.Println("No job left to assign.")
    }
    return nil
}

判断 worker 是请求 map 任务还是 reduce 任务是通过剩余未完成的 map 任务的数量来实现的。但考虑当 worker A,B 先后执行最后两个 map 任务 的情况,A 执行完 map 任务后继续请求下一个任务。当 A 加锁取出 c.mapJobsNumLeft 的值时,B 并没有完成任务,于是 A 取出的 c.mapJobsNumLeft 的值为1,会继续请求 map 任务。但此时 map 任务已经全部分配出去,c.mapQueue 是空的,A 将会阻塞在 “reply.MapArgs.WorkerId = <-c.mapQueue” 处,并且只要 B 顺利完成最后一个 map 任务,c.mapQueue 将会一直是空的,A 也就会一直阻塞在此处,不能继续执行后面的 reduce 任务了。

解决方案是不将 worker 阻塞在 channel 处,而是直接判断 channel 是否为空,如果为空就让 worker 等待一段时间再重新请求任务。这样就可以给整个 GetJob 函数加上锁。

通过全部测试的代码

rpc.go

package mr

//
// RPC definitions.
//
// remember to capitalize all names.
//

import (
    "os"
    "strconv"
)

// Add your RPC definitions here.

// the job type enum, Map and Reduce
type JobType int

const (
    Map JobType = iota
    Reduce
    Exit
    Wait
)

// worker ask for a job
type JobArgs struct{}

// the coordinator reply for the job
type JobReply struct {
    JobType    JobType
    MapArgs    MapWorkerArgs
    ReduceArgs ReduceWorkerArgs
}

type PassFileNamesArgs struct {
    IntermediateFileNames []string
}

type PassFileNamesReply struct{}

type CompleteJobArgs struct {
    TheJobType JobType
    WorkerId   int
}

type CompleteJobReply struct{}

// Cook up a unique-ish UNIX-domain socket name
// in /var/tmp, for the coordinator.
// Can't use the current directory since
// Athena AFS doesn't support UNIX-domain sockets.
func coordinatorSock() string {
    s := "/var/tmp/5840-mr-"
    s += strconv.Itoa(os.Getuid())
    return s
}

coordinator.go

package mr

import (
    "log"
    "net"
    "net/http"
    "net/rpc"
    "os"
    "sync"
    "time"
)

type Coordinator struct {
    files   []string
    nReduce int // number of reduce workers
    // the file names of the intermediate files
    // index i is for the No.i Reduce worker
    intermediateFileNames [][]string
    mapJobsNumLeft        int // number of map jobs left uncompleted
    reduceJobsNumLeft     int // number of reduce jobs left uncompleted
    mutexLock             sync.Mutex
    mapQueue              chan int // queue of map jobs
    reduceQueue           chan int // queue of reduce jobs
    // the status of the jobs
    // 0 : uncompleted
    // 1 : successfully completed
    mapJobsStatus    []int // status of map jobs
    reduceJobsStatus []int // status of reduce jobs
}

// the arguments to pass to the mapWorker
type MapWorkerArgs struct {
    File    string
    JobId   int // worker id
    NReduce int // number of reduce workers
}

// the arguments to pass to the reduceWorker
type ReduceWorkerArgs struct {
    JobId                 int      // worker id
    IntermediateFileNames []string // files for reduce workers to work on
}

// Your code here -- RPC handlers for the worker to call.

func (c *Coordinator) GetJob(args *JobArgs, reply *JobReply) error {
    // fmt.Println("One worker is asking for job.")
    c.mutexLock.Lock()
    defer c.mutexLock.Unlock()
    mapJobsNumLeft := c.mapJobsNumLeft
    reduceJobsNumLeft := c.reduceJobsNumLeft
    if mapJobsNumLeft > 0 {
        if len(c.mapQueue) == 0 {
            reply.JobType = Wait
            return nil
        }
        reply.JobType = Map
        reply.MapArgs.JobId = <-c.mapQueue
        reply.MapArgs.File = c.files[reply.MapArgs.JobId]
        reply.MapArgs.NReduce = c.nReduce
        // fmt.Printf("Assigned Map Job No.%v\n", reply.MapArgs.WorkerId)
        go c.waitForWorker(Map, reply.MapArgs.JobId)
    } else if reduceJobsNumLeft > 0 {
        if len(c.reduceQueue) == 0 {
            reply.JobType = Wait
            return nil
        }
        reply.JobType = Reduce
        reply.ReduceArgs.JobId = <-c.reduceQueue
        reply.ReduceArgs.IntermediateFileNames = c.intermediateFileNames[reply.ReduceArgs.JobId]
        // fmt.Printf("Assigned Reduce Job No.%v\n", reply.ReduceArgs.WorkerId)
        go c.waitForWorker(Reduce, reply.ReduceArgs.JobId)
    } else {
        reply.JobType = Exit
        // fmt.Println("No job left to assign.")
    }
    return nil
}

// worker calls this function to signal that the job has been completed
func (c *Coordinator) CompleteJob(args *CompleteJobArgs, reply *CompleteJobReply) error {
    c.mutexLock.Lock()
    defer c.mutexLock.Unlock()
    workerId := args.WorkerId
    switch args.TheJobType {
    case Map:
        if c.mapJobsStatus[workerId] == 0 {
            c.mapJobsNumLeft--
        }
        c.mapJobsStatus[workerId] = 1
        // fmt.Printf("Completed Map Job No.%v\n", workerId)
    case Reduce:
        if c.reduceJobsStatus[workerId] == 0 {
            c.reduceJobsNumLeft--
        }
        c.reduceJobsStatus[workerId] = 1
        // fmt.Printf("Completed Reduce Job No.%v\n", workerId)
    }
    return nil
}

// wait the worker for 10 seconds
// if the job is not completed after 10 seconds
// then assume the worker has already crashed
// put the job in the queue, to assign another worker to work on this job
func (c *Coordinator) waitForWorker(jobType JobType, workerId int) {
    time.Sleep(time.Second * 10)
    c.mutexLock.Lock()
    defer c.mutexLock.Unlock()
    switch jobType {
    case Map:
        if c.mapJobsStatus[workerId] != 1 {
            // fmt.Printf("Map job %v timeout\n", workerId)
            c.mapQueue <- workerId
        }
    case Reduce:
        if c.reduceJobsStatus[workerId] != 1 {
            // fmt.Printf("Reduce job %v timeout\n", workerId)
            c.reduceQueue <- workerId
        }
    }
}

func (c *Coordinator) PassFileNames(args *PassFileNamesArgs, reply *PassFileNamesReply) error {
    c.mutexLock.Lock()
    defer c.mutexLock.Unlock()
    intermediateFileNames := args.IntermediateFileNames
    for i, intermediateFileName := range intermediateFileNames {
        c.intermediateFileNames[i] = append(c.intermediateFileNames[i], intermediateFileName)
    }
    return nil
}

func (c *Coordinator) server() {
    rpc.Register(c)
    rpc.HandleHTTP()
    // l, e := net.Listen("tcp", ":1234")
    sockname := coordinatorSock()
    os.Remove(sockname)
    l, e := net.Listen("unix", sockname)
    if e != nil {
        log.Fatal("listen error:", e)
    }
    go http.Serve(l, nil)
}

// main/mrcoordinator.go calls Done() periodically to find out
// if the entire job has finished.
func (c *Coordinator) Done() bool {
    c.mutexLock.Lock()
    defer c.mutexLock.Unlock()
    if c.mapJobsNumLeft == 0 && c.reduceJobsNumLeft == 0 {
        return true
    }
    return false
}

// create a Coordinator.
// main/mrcoordinator.go calls this function.
// nReduce is the number of reduce tasks to use.
func MakeCoordinator(files []string, nReduce int) *Coordinator {
    c := Coordinator{}

    // Your code here.
    c.files = files
    c.nReduce = nReduce
    c.intermediateFileNames = make([][]string, nReduce)
    c.reduceJobsNumLeft = nReduce
    c.mapJobsNumLeft = len(files)

    c.mapQueue = make(chan int, len(files))
    c.reduceQueue = make(chan int, nReduce)
    // put all jobs in the queue
    for i := 0; i < len(files); i++ {
        c.mapQueue <- i
    }
    for i := 0; i < nReduce; i++ {
        c.reduceQueue <- i
    }

    c.mapJobsStatus = make([]int, len(files))
    c.reduceJobsStatus = make([]int, nReduce)

    // fmt.Println("----------------------------------------------------------------")
    // fmt.Printf("c.files num : %v\n", len(c.files))
    // fmt.Printf("c.nReduce = %d\n", c.nReduce)
    // fmt.Println("----------------------------------------------------------------")

    c.server()
    return &c
}

worker.go

package mr

import (
    "crypto/rand"
    "encoding/json"
    "fmt"
    "hash/fnv"
    "io"
    "log"
    "math/big"
    "net/rpc"
    "os"
    "plugin"
    "sort"
    "time"
)

// Map functions return a slice of KeyValue.
type KeyValue struct {
    Key   string
    Value string
}

// for sorting by key.
type ByKey []KeyValue

// for sorting by key.
func (a ByKey) Len() int           { return len(a) }
func (a ByKey) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
func (a ByKey) Less(i, j int) bool { return a[i].Key < a[j].Key }

// use ihash(key) % NReduce to choose the reduce
// task number for each KeyValue emitted by Map.
func ihash(key string) int {
    h := fnv.New32a()
    h.Write([]byte(key))
    return int(h.Sum32() & 0x7fffffff)
}

// load the application Map and Reduce functions
// from a plugin file, e.g. ../mrapps/wc.so
func loadPlugin(filename string) (func(string, string) []KeyValue, func(string, []string) string) {
    p, err := plugin.Open(filename)
    if err != nil {
        log.Fatalf("cannot load plugin %v", filename)
    }
    xmapf, err := p.Lookup("Map")
    if err != nil {
        log.Fatalf("cannot find Map in %v", filename)
    }
    mapf := xmapf.(func(string, string) []KeyValue)
    xreducef, err := p.Lookup("Reduce")
    if err != nil {
        log.Fatalf("cannot find Reduce in %v", filename)
    }
    reducef := xreducef.(func(string, []string) string)

    return mapf, reducef
}

func mapWorker(args MapWorkerArgs) {
    nReduce := args.NReduce
    file, err := os.Open(args.File)
    if err != nil {
        log.Fatalf("cannot open %v", args.File)
        return
    }
    content, err := io.ReadAll(file)
    if err != nil {
        log.Fatalf("cannot read %v", args.File)
        return
    }
    file.Close()
    mapf, _ := loadPlugin(os.Args[1])
    kva := mapf(args.File, string(content))
    // divide the key value pairs for each reduce workers
    kvalist := make([][]KeyValue, nReduce)
    intermediateFileNameList := make([]string, nReduce)
    for _, kv := range kva {
        num := ihash(kv.Key) % nReduce // the reduce task number for the KeyValue pair
        kvalist[num] = append(kvalist[num], kv)
    }
    // write the divided key value pairs to disk
    for i, kva := range kvalist {
        intermediateFileName := fmt.Sprintf("mr-%d-%d", args.JobId, i)
        intermediateFileNameList[i] = intermediateFileName
        intermediateFile, err := os.Create(intermediateFileName)
        if err != nil {
            log.Fatalf("cannot create %v", intermediateFileName)
        }
        enc := json.NewEncoder(intermediateFile)
        for _, kv := range kva {
            err := enc.Encode(&kv)
            if err != nil {
                log.Fatalf("cannot encode %v", kv)
                return
            }
        }
    }
    // pass the address (file name) of the key value pairs file to the master
    pargs := new(PassFileNamesArgs)
    preply := new(PassFileNamesReply)
    pargs.IntermediateFileNames = intermediateFileNameList
    ok := call("Coordinator.PassFileNames", &pargs, &preply)
    if !ok {
        fmt.Println("Call PassFileNames failed.")
        return
    }

    // send message to the coordinator that the map job has been completed
    cargs := new(CompleteJobArgs)
    cargs.TheJobType = Map
    cargs.WorkerId = args.JobId
    creply := new(CompleteJobReply)
    ok = call("Coordinator.CompleteJob", &cargs, &creply)
    if !ok {
        fmt.Println("Call CompleteJob failed.")
        return
    }
}

func reduceWorker(args ReduceWorkerArgs) {
    intermediateFileNames := args.IntermediateFileNames
    _, reducef := loadPlugin(os.Args[1])
    intermediate := make([]KeyValue, 0)
    // read key value pairs from intermediate files
    for _, fileName := range intermediateFileNames {
        intermediateFile, err := os.Open(fileName)
        if err != nil {
            // it is possible that map didn't generate this intermediate file
            // and it is nomal
            continue
        }
        dec := json.NewDecoder(intermediateFile)
        for {
            var kv KeyValue
            if err := dec.Decode(&kv); err != nil {
                break
            }
            intermediate = append(intermediate, kv)
        }
        intermediateFile.Close()
    }
    sort.Sort(ByKey(intermediate))
    // create output file
    oname := fmt.Sprintf("mr-out-%v", args.JobId)
    // create temporary file to avoide problems with parallel reduce workers writing to the same file
    ofile, _ := os.CreateTemp("./", "mr-out-*")
    // ofile, _ := os.Create(oname)
    //
    // call Reduce on each distinct key in intermediate[],
    // and print the result to ofile
    //
    i := 0
    for i < len(intermediate) {
        j := i + 1
        for j < len(intermediate) && intermediate[j].Key == intermediate[i].Key {
            j++
        }
        values := []string{}
        for k := i; k < j; k++ {
            values = append(values, intermediate[k].Value)
        }
        output := reducef(intermediate[i].Key, values)

        // this is the correct format for each line of Reduce output.
        fmt.Fprintf(ofile, "%v %v\n", intermediate[i].Key, output)

        i = j
    }
    ofile.Close()
    os.Rename(ofile.Name(), oname)

    // send message to the coordinator that this reduce job has been completed
    cargs := new(CompleteJobArgs)
    cargs.TheJobType = Reduce
    cargs.WorkerId = args.JobId
    creply := new(CompleteJobReply)
    ok := call("Coordinator.CompleteJob", &cargs, &creply)
    if !ok {
        fmt.Println("Call CompleteJob failed.")
        return
    }
}

// main/mrworker.go calls this function.
func Worker(mapf func(string, string) []KeyValue,
    reducef func(string, []string) string,
) {
    workerId, err := rand.Int(rand.Reader, big.NewInt(1000))
    if err != nil {
        log.Fatal(err)
    }
    fmt.Printf("Starting worker %v\n", workerId)
    for {
        args := new(JobArgs)
        reply := new(JobReply)
        ok := call("Coordinator.GetJob", &args, &reply)
        // sleep for a little while to avoid all jobs being asked by one worker
        // time.Sleep(time.Second)
        if !ok {
            // assume that the coordinator has exited because the job is done
            fmt.Println("Call GetJob failed.")
            return
        } else {
            switch reply.JobType {
            case Map:
                fmt.Printf("Running Map No.%d on worker %v\n", reply.MapArgs.JobId, workerId)
                mapWorker(reply.MapArgs)
            case Reduce:
                fmt.Printf("Running Reduce No.%d on worker %v\n", reply.ReduceArgs.JobId, workerId)
                reduceWorker(reply.ReduceArgs)
                // time.Sleep(time.Millisecond * 100)
            case Exit:
                fmt.Println("No job to run, worker exit.")
                return
            case Wait:
                time.Sleep(time.Millisecond * 50)
            }
        }
    }
}

// send an RPC request to the coordinator, wait for the response.
// usually returns true.
// returns false if something goes wrong.
func call(rpcname string, args interface{}, reply interface{}) bool {
    // c, err := rpc.DialHTTP("tcp", "127.0.0.1"+":1234")
    sockname := coordinatorSock()
    c, err := rpc.DialHTTP("unix", sockname)
    if err != nil {
        log.Fatal("dialing:", err)
    }
    defer c.Close()

    err = c.Call(rpcname, args, reply)
    if err == nil {
        return true
    }

    fmt.Println(err)
    return false
}

标签:string,err,6.5840,Reduce,Lab,func,worker,reply,MIT
From: https://www.cnblogs.com/tea-in-the-snow/p/18030012

相关文章

  • Linear-Time Graph Neural Networks for Scalable Recommendations
    目录概符号说明MotivationLTGNN代码ZhangJ.,XueR.,FanW.,XuX.,LiQ.,PeiJ.andLiuX.Linear-timegraphneuralnetworksforscalablerecommendations.WWW,2024.概在大图上的一种高效的训练方式.符号说明\(\mathcal{V}\),nodeset;\(\mathcal{E}\),edg......
  • 基于yolov2深度学习网络的车辆行人检测算法matlab仿真
    1.算法运行效果图预览   2.算法运行软件版本MATLAB2022a 3.算法理论概述      近年来,深度学习在计算机视觉领域取得了显著成果,特别是在目标检测任务中。YOLO(YouOnlyLookOnce)系列算法作为其中的代表,以其高效和实时的性能受到广泛关注。YOLOv2,作为YOL......
  • 基于WIFI指纹的室内定位算法matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本matlab2022a 3.算法理论概述        随着移动互联网和物联网技术的飞速发展,位置服务(LBS)已成为许多应用的核心功能,如导航、社交网络和智能物流等。室外定位技术,如全球定位系统(GPS),已相当成熟并广泛应用。然而,由于建......
  • m基于深度学习网络的活体人脸和视频人脸识别系统matlab仿真,带GUI界面
    1.算法仿真效果matlab2022a仿真结果如下:  2.算法涉及理论知识概要        随着人工智能技术的快速发展,人脸识别技术已经广泛应用于身份验证、安全监控、智能支付等领域。活体人脸和视频人脸识别系统是其中的重要分支,旨在通过深度学习网络对人脸进行高效、准确......
  • [GIT] 修改之前的commit提交的作者信息和邮箱信息 [转]
    1总体思路更改之前提交的作者信息和邮箱信息需要进行两步操作。首先,使用gitfilter-branch命令进行历史重写然后,使用gitpush--force将更改推送到远程仓库。Step1使用gitfilter-branch进行历史重写在终端或命令行中执行以下命令:gitfilter-branch--env-filte......
  • VMware Cloud Director Availability 4.7 | 灾难恢复和迁移 | DRaaS
    VMwareCloudDirectorAvailability4.7|灾难恢复和迁移|DRaaSOnboarding&DisasterRecoveryServices请访问原文链接:https://sysin.org/blog/vmware-cloud-director-availability-4/,查看最新版。原创作品,转载请保留出处。作者主页:sysin.orgVMwareCloudDirectorAva......
  • 30.基于gitlab的持续集成机制
    一般代码提交流程开发人员从远程中央仓库(例如dev)拉取最新的代码本地创建自己的分支在自己的分支中进行开发在完成一个功能并通过自测后,提交本地版本库将本地版本库推送到远程中央仓库自己的分支在远程中央仓库自己的分支中,提交MergeRequest(合并请求,简称MR)。源......
  • colab运行google最新开源模型Gemma
    Google开源了新的大模型Gemma,Gemma是一系列轻量级、最先进的开放式模型,采用与创建Gemini模型相同的研究和技术而构建。Gemma由GoogleDeepMind和Google的其他团队开发,其灵感来自Gemini,其名称反映了拉丁语_gemma_,意思是“宝石”。除了模型权重之外,我们还发布了工具来支持开......
  • 根据星历文件实现卫星的动态运行模拟matlab仿真
    1.算法运行效果图预览 2.算法运行软件版本MATLAB2022a  3.算法理论概述      卫星的动态跟踪捕获是航天工程和卫星通信领域中的关键技术之一。它涉及到对卫星轨道的精确预测、接收设备的指向控制以及信号处理等多个方面。       随着航天技术的不断......
  • 基于双目RGB图像和图像深度信息的三维室内场景建模matlab仿真
    1.算法运行效果图预览   2.算法运行软件版本matlab2022a 3.算法理论概述        三维室内场景建模在计算机视觉、机器人导航、虚拟现实等领域有广泛应用。传统的建模方法通常基于激光扫描仪或深度相机,但这些设备价格昂贵且不易普及。基于双目RGB图像和图像......