首页 > 其他分享 >卡方分布笔记

卡方分布笔记

时间:2024-02-14 17:22:56浏览次数:37  
标签:square chi random 笔记 分布 degrees freedom 卡方 distribution

The chi-square distribution is a continuous probability distribution that is widely used in statistical inference, particularly in the context of hypothesis testing and in the construction of confidence intervals. It arises primarily in the context of estimating the variance of a normally distributed population and in the testing of independence in contingency tables.

Here are some key points about the chi-square distribution:

1. **Definition:** The chi-square distribution with \( k \) degrees of freedom is the distribution of a sum of the squares of \( k \) independent standard normal random variables. If \( Z_1, Z_2, ..., Z_k \) are independent standard normal random variables, then the random variable \( Q \), defined as \( Q = Z_1^2 + Z_2^2 + ... + Z_k^2 \), follows a chi-square distribution with \( k \) degrees of freedom, denoted as \( Q \sim \chi^2(k) \).

2. **Shape:** The shape of the chi-square distribution depends on the degrees of freedom. With 1 degree of freedom, the distribution is heavily skewed to the right, but as the degrees of freedom increase, the distribution becomes more symmetric and approaches a normal distribution.

3. **Non-negativity:** Since it is defined as a sum of squares, the chi-square distribution is always non-negative.

4. **Applications:**
- In hypothesis testing, it is used for tests of independence and goodness-of-fit.
- In confidence interval estimation, it helps to construct intervals for population variances.
- It's also used in the analysis of variance (ANOVA).

5. **Probability Density Function (PDF):** The PDF of a chi-square distribution with \( k \) degrees of freedom is given by:

\[ f(x; k) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{(k/2)-1} e^{-x/2} \]

for \( x > 0 \), where \( \Gamma \) denotes the gamma function, which extends the factorial function to non-integer values.

6. **Mean and Variance:** The mean of a chi-square distribution is equal to its degrees of freedom (\( k \)), and its variance is twice its degrees of freedom (\( 2k \)).

The chi-square distribution is a special case of the gamma distribution and plays a crucial role in various statistical methodologies.

标签:square,chi,random,笔记,分布,degrees,freedom,卡方,distribution
From: https://www.cnblogs.com/qtdwz/p/18015326

相关文章

  • 莫队学习笔记
    莫队莫队是一种常见的离线处理区间查询问的方法。莫队的思想是把序列分块,然后把询问按照左端点所在块为第一关键字,右端点为第二关键字排序,然后处理询问,维护指针\(l,r\)表示当前处理的区间是\([l,r]\),每次根据询问区间来移动指针计算贡献。关于复杂度。假设指针移动的复杂度......
  • Go语言精进之路读书笔记第26条——了解接口类型变量的内部表示
    接口是Go这门静态语言中唯一“动静兼备”的语言特性接口的静态特性接口类型变量具有静态类型,比如:vareerror中变量e的静态类型为error支持在编译阶段的类型检查:当一个接口类型变量被赋值时,编译器会检查右值的类型是否实现了该接口方法集合中的所有方法接口的动态特性接......
  • Check if a given binary tree is BST【2月14日学习笔记】
    点击查看代码//CheckifagivenbinarytreeisBST#include<iostream>#defineMIN-999999#defineMAX999999structnode{intdata;node*left;node*right;};node*getnewnode(intx){node*temp=newnode;temp->data=x;......
  • 矩阵加速学习笔记
    矩阵加速矩阵加速主要是把DP的转移写成矩阵的形式,然后用矩阵快速幂优化。可以用矩阵快速幂优化要求矩阵的运算是满足有结合律的,常用的\(\text{min,+}\)卷积等。还有一些特殊技巧,比如多组询问时可以预处理幂次的矩阵然后查询时直接用行向量来乘,以及存在矩阵光速幂。P4223......
  • 【运维测试】移动测试自动化知识总结第1篇:移动端测试介绍(代码笔记已分享)
    本系列文章md笔记(已分享)主要讨论移动测试相关知识。主要知识点包括:移动测试分类及android环境搭建,adb常用命令,appium环境搭建及使用,pytest框架学习,PO模式,数据驱动,Allure报告,Jenkins持续集成。掌握操作app的基本api,掌握元素定位及获取元素信息的api,掌握事件操作api,掌握app模拟手势......
  • 分布式事务详解
    概述随着互联网的发展,软件系统由原来的单体应用转变为分布式应用。分布式系统把一个单体应用拆分为可独立部署的多个服务,因此需要服务与服务之间远程协作才能完成事务操作。这种分布式系统下不同服务之间通过远程协作完成的事务称之为分布式事务,例如用户注册送积分事务、创建订单......
  • C++——编译和链接原理笔记
    我们在学习和开发C++程序中,理解编译和链接的原理至关重要。下面将学习一下C++程序是如何从源代码转换为可执行文件的过程,并结合示例代码进行说明。也是为了解开自己在刚学习C++的时候,编译时间长的疑惑。为了不让自己的学习之路这么枯燥,我按照一个正常的开发流程梳理一下......
  • Python语法笔记
    url中含有中文的处理Python编程:URL网址链接中的中文编码与解码Python进行URL解码fromurllib.requestimportquote... defstart_requests(self):keywords=['手机','笔记本电脑','键鼠套装']forkeywordinkeywords:url=r'https://s.taobao.......
  • MySQL笔记
    MySQL查看表结构简单命令创建数据库:CREATEDATABASETest1Spider使用数据库:usetest1spider删除表:DROPTABLE语句用于删除数据库中的现有表。--删除表,如果存在的话DROPTABLEIFEXISTSmytable;--直接删除表,不检查是否存在DROPTABLEmytable;创建表CREATETABLE......
  • 书生开源大模型训练营-第2讲笔记
    1大模型及InternLM模型简介1.1什么是大模型?大模型=大语料+大算力+大模型参数大模型的优势在于其能够捕捉和理解数据中更为复杂、抽象的特征和关系。书读三遍,其义自见大模型的应用和发展也需要在性能、成本和道德等多个方面进行权衡和考量。1.2InternLM模型全链条开源I......