首页 > 其他分享 >nim静态编译capstone示例代码

nim静态编译capstone示例代码

时间:2024-02-10 11:44:19浏览次数:20  
标签:case return X86 nim 示例 EFLAGS capstone printf x86

capstone.c代码:

/* Capstone Disassembler Engine */
/* By Nguyen Anh Quynh <[email protected]>, 2013 */

#include <stdio.h>
#include <stdlib.h>

#include <capstone/capstone.h>
#include <capstone/platform.h>

static csh handle;

struct platform
{
  cs_arch arch;
  cs_mode mode;
  unsigned char *code;
  size_t size;
  const char *comment;
  cs_opt_type opt_type;
  cs_opt_value opt_value;
};

static void print_string_hex(const char *comment, unsigned char *str,
                             size_t len)
{
  unsigned char *c;

  printf("%s", comment);
  for (c = str; c < str + len; c++)
  {
    printf("0x%02x ", *c & 0xff);
  }

  printf("\n");
}

static const char *get_eflag_name(uint64_t flag)
{
  switch (flag)
  {
  default:
    return NULL;
  case X86_EFLAGS_UNDEFINED_OF:
    return "UNDEF_OF";
  case X86_EFLAGS_UNDEFINED_SF:
    return "UNDEF_SF";
  case X86_EFLAGS_UNDEFINED_ZF:
    return "UNDEF_ZF";
  case X86_EFLAGS_MODIFY_AF:
    return "MOD_AF";
  case X86_EFLAGS_UNDEFINED_PF:
    return "UNDEF_PF";
  case X86_EFLAGS_MODIFY_CF:
    return "MOD_CF";
  case X86_EFLAGS_MODIFY_SF:
    return "MOD_SF";
  case X86_EFLAGS_MODIFY_ZF:
    return "MOD_ZF";
  case X86_EFLAGS_UNDEFINED_AF:
    return "UNDEF_AF";
  case X86_EFLAGS_MODIFY_PF:
    return "MOD_PF";
  case X86_EFLAGS_UNDEFINED_CF:
    return "UNDEF_CF";
  case X86_EFLAGS_MODIFY_OF:
    return "MOD_OF";
  case X86_EFLAGS_RESET_OF:
    return "RESET_OF";
  case X86_EFLAGS_RESET_CF:
    return "RESET_CF";
  case X86_EFLAGS_RESET_DF:
    return "RESET_DF";
  case X86_EFLAGS_RESET_IF:
    return "RESET_IF";
  case X86_EFLAGS_TEST_OF:
    return "TEST_OF";
  case X86_EFLAGS_TEST_SF:
    return "TEST_SF";
  case X86_EFLAGS_TEST_ZF:
    return "TEST_ZF";
  case X86_EFLAGS_TEST_PF:
    return "TEST_PF";
  case X86_EFLAGS_TEST_CF:
    return "TEST_CF";
  case X86_EFLAGS_RESET_SF:
    return "RESET_SF";
  case X86_EFLAGS_RESET_AF:
    return "RESET_AF";
  case X86_EFLAGS_RESET_TF:
    return "RESET_TF";
  case X86_EFLAGS_RESET_NT:
    return "RESET_NT";
  case X86_EFLAGS_PRIOR_OF:
    return "PRIOR_OF";
  case X86_EFLAGS_PRIOR_SF:
    return "PRIOR_SF";
  case X86_EFLAGS_PRIOR_ZF:
    return "PRIOR_ZF";
  case X86_EFLAGS_PRIOR_AF:
    return "PRIOR_AF";
  case X86_EFLAGS_PRIOR_PF:
    return "PRIOR_PF";
  case X86_EFLAGS_PRIOR_CF:
    return "PRIOR_CF";
  case X86_EFLAGS_PRIOR_TF:
    return "PRIOR_TF";
  case X86_EFLAGS_PRIOR_IF:
    return "PRIOR_IF";
  case X86_EFLAGS_PRIOR_DF:
    return "PRIOR_DF";
  case X86_EFLAGS_TEST_NT:
    return "TEST_NT";
  case X86_EFLAGS_TEST_DF:
    return "TEST_DF";
  case X86_EFLAGS_RESET_PF:
    return "RESET_PF";
  case X86_EFLAGS_PRIOR_NT:
    return "PRIOR_NT";
  case X86_EFLAGS_MODIFY_TF:
    return "MOD_TF";
  case X86_EFLAGS_MODIFY_IF:
    return "MOD_IF";
  case X86_EFLAGS_MODIFY_DF:
    return "MOD_DF";
  case X86_EFLAGS_MODIFY_NT:
    return "MOD_NT";
  case X86_EFLAGS_MODIFY_RF:
    return "MOD_RF";
  case X86_EFLAGS_SET_CF:
    return "SET_CF";
  case X86_EFLAGS_SET_DF:
    return "SET_DF";
  case X86_EFLAGS_SET_IF:
    return "SET_IF";
  }
}

static const char *get_fpu_flag_name(uint64_t flag)
{
  switch (flag)
  {
  default:
    return NULL;
  case X86_FPU_FLAGS_MODIFY_C0:
    return "MOD_C0";
  case X86_FPU_FLAGS_MODIFY_C1:
    return "MOD_C1";
  case X86_FPU_FLAGS_MODIFY_C2:
    return "MOD_C2";
  case X86_FPU_FLAGS_MODIFY_C3:
    return "MOD_C3";
  case X86_FPU_FLAGS_RESET_C0:
    return "RESET_C0";
  case X86_FPU_FLAGS_RESET_C1:
    return "RESET_C1";
  case X86_FPU_FLAGS_RESET_C2:
    return "RESET_C2";
  case X86_FPU_FLAGS_RESET_C3:
    return "RESET_C3";
  case X86_FPU_FLAGS_SET_C0:
    return "SET_C0";
  case X86_FPU_FLAGS_SET_C1:
    return "SET_C1";
  case X86_FPU_FLAGS_SET_C2:
    return "SET_C2";
  case X86_FPU_FLAGS_SET_C3:
    return "SET_C3";
  case X86_FPU_FLAGS_UNDEFINED_C0:
    return "UNDEF_C0";
  case X86_FPU_FLAGS_UNDEFINED_C1:
    return "UNDEF_C1";
  case X86_FPU_FLAGS_UNDEFINED_C2:
    return "UNDEF_C2";
  case X86_FPU_FLAGS_UNDEFINED_C3:
    return "UNDEF_C3";
  case X86_FPU_FLAGS_TEST_C0:
    return "TEST_C0";
  case X86_FPU_FLAGS_TEST_C1:
    return "TEST_C1";
  case X86_FPU_FLAGS_TEST_C2:
    return "TEST_C2";
  case X86_FPU_FLAGS_TEST_C3:
    return "TEST_C3";
  }
}

static void print_insn_detail(csh ud, cs_mode mode, cs_insn *ins)
{
  int count, i;
  cs_x86 *x86;
  cs_regs regs_read, regs_write;
  uint8_t regs_read_count, regs_write_count;

  // detail can be NULL on "data" instruction if SKIPDATA option is turned ON
  if (ins->detail == NULL)
    return;

  x86 = &(ins->detail->x86);

  print_string_hex("\tPrefix:", x86->prefix, 4);

  print_string_hex("\tOpcode:", x86->opcode, 4);

  printf("\trex: 0x%x\n", x86->rex);

  printf("\taddr_size: %u\n", x86->addr_size);
  printf("\tmodrm: 0x%x\n", x86->modrm);
  if (x86->encoding.modrm_offset != 0)
  {
    printf("\tmodrm_offset: 0x%x\n", x86->encoding.modrm_offset);
  }

  printf("\tdisp: 0x%" PRIx64 "\n", x86->disp);
  if (x86->encoding.disp_offset != 0)
  {
    printf("\tdisp_offset: 0x%x\n", x86->encoding.disp_offset);
  }

  if (x86->encoding.disp_size != 0)
  {
    printf("\tdisp_size: 0x%x\n", x86->encoding.disp_size);
  }

  // SIB is not available in 16-bit mode
  if ((mode & CS_MODE_16) == 0)
  {
    printf("\tsib: 0x%x\n", x86->sib);
    if (x86->sib_base != X86_REG_INVALID)
      printf("\t\tsib_base: %s\n", cs_reg_name(handle, x86->sib_base));
    if (x86->sib_index != X86_REG_INVALID)
      printf("\t\tsib_index: %s\n", cs_reg_name(handle, x86->sib_index));
    if (x86->sib_scale != 0)
      printf("\t\tsib_scale: %d\n", x86->sib_scale);
  }

  // XOP code condition
  if (x86->xop_cc != X86_XOP_CC_INVALID)
  {
    printf("\txop_cc: %u\n", x86->xop_cc);
  }

  // SSE code condition
  if (x86->sse_cc != X86_SSE_CC_INVALID)
  {
    printf("\tsse_cc: %u\n", x86->sse_cc);
  }

  // AVX code condition
  if (x86->avx_cc != X86_AVX_CC_INVALID)
  {
    printf("\tavx_cc: %u\n", x86->avx_cc);
  }

  // AVX Suppress All Exception
  if (x86->avx_sae)
  {
    printf("\tavx_sae: %u\n", x86->avx_sae);
  }

  // AVX Rounding Mode
  if (x86->avx_rm != X86_AVX_RM_INVALID)
  {
    printf("\tavx_rm: %u\n", x86->avx_rm);
  }

  // Print out all immediate operands
  count = cs_op_count(ud, ins, X86_OP_IMM);
  if (count)
  {
    printf("\timm_count: %u\n", count);
    for (i = 1; i < count + 1; i++)
    {
      int index = cs_op_index(ud, ins, X86_OP_IMM, i);
      printf("\t\timms[%u]: 0x%" PRIx64 "\n", i, x86->operands[index].imm);
      if (x86->encoding.imm_offset != 0)
      {
        printf("\timm_offset: 0x%x\n", x86->encoding.imm_offset);
      }

      if (x86->encoding.imm_size != 0)
      {
        printf("\timm_size: 0x%x\n", x86->encoding.imm_size);
      }
    }
  }

  if (x86->op_count)
    printf("\top_count: %u\n", x86->op_count);

  // Print out all operands
  for (i = 0; i < x86->op_count; i++)
  {
    cs_x86_op *op = &(x86->operands[i]);

    switch ((int)op->type)
    {
    case X86_OP_REG:
      printf("\t\toperands[%u].type: REG = %s\n", i,
             cs_reg_name(handle, op->reg));
      break;
    case X86_OP_IMM:
      printf("\t\toperands[%u].type: IMM = 0x%" PRIx64 "\n", i, op->imm);
      break;
    case X86_OP_MEM:
      printf("\t\toperands[%u].type: MEM\n", i);
      if (op->mem.segment != X86_REG_INVALID)
        printf("\t\t\toperands[%u].mem.segment: REG = %s\n", i,
               cs_reg_name(handle, op->mem.segment));
      if (op->mem.base != X86_REG_INVALID)
        printf("\t\t\toperands[%u].mem.base: REG = %s\n", i,
               cs_reg_name(handle, op->mem.base));
      if (op->mem.index != X86_REG_INVALID)
        printf("\t\t\toperands[%u].mem.index: REG = %s\n", i,
               cs_reg_name(handle, op->mem.index));
      if (op->mem.scale != 1)
        printf("\t\t\toperands[%u].mem.scale: %u\n", i, op->mem.scale);
      if (op->mem.disp != 0)
        printf("\t\t\toperands[%u].mem.disp: 0x%" PRIx64 "\n", i, op->mem.disp);
      break;
    default:
      break;
    }

    // AVX broadcast type
    if (op->avx_bcast != X86_AVX_BCAST_INVALID)
      printf("\t\toperands[%u].avx_bcast: %u\n", i, op->avx_bcast);

    // AVX zero opmask {z}
    if (op->avx_zero_opmask != false)
      printf("\t\toperands[%u].avx_zero_opmask: TRUE\n", i);

    printf("\t\toperands[%u].size: %u\n", i, op->size);

    switch (op->access)
    {
    default:
      break;
    case CS_AC_READ:
      printf("\t\toperands[%u].access: READ\n", i);
      break;
    case CS_AC_WRITE:
      printf("\t\toperands[%u].access: WRITE\n", i);
      break;
    case CS_AC_READ | CS_AC_WRITE:
      printf("\t\toperands[%u].access: READ | WRITE\n", i);
      break;
    }
  }

  // Print out all registers accessed by this instruction (either implicit or
  // explicit)
  if (!cs_regs_access(ud, ins, regs_read, &regs_read_count, regs_write,
                      &regs_write_count))
  {
    if (regs_read_count)
    {
      printf("\tRegisters read:");
      for (i = 0; i < regs_read_count; i++)
      {
        printf(" %s", cs_reg_name(handle, regs_read[i]));
      }
      printf("\n");
    }

    if (regs_write_count)
    {
      printf("\tRegisters modified:");
      for (i = 0; i < regs_write_count; i++)
      {
        printf(" %s", cs_reg_name(handle, regs_write[i]));
      }
      printf("\n");
    }
  }

  if (x86->eflags || x86->fpu_flags)
  {
    for (i = 0; i < ins->detail->groups_count; i++)
    {
      if (ins->detail->groups[i] == X86_GRP_FPU)
      {
        printf("\tFPU_FLAGS:");
        for (i = 0; i <= 63; i++)
          if (x86->fpu_flags & ((uint64_t)1 << i))
          {
            printf(" %s", get_fpu_flag_name((uint64_t)1 << i));
          }
        printf("\n");
        break;
      }
    }

    if (i == ins->detail->groups_count)
    {
      printf("\tEFLAGS:");
      for (i = 0; i <= 63; i++)
        if (x86->eflags & ((uint64_t)1 << i))
        {
          printf(" %s", get_eflag_name((uint64_t)1 << i));
        }
      printf("\n");
    }
  }

  printf("\n");
}

void test()
{
#define X86_CODE64                                                           \
  "\x55\x48\x8b\x05\xb8\x13\x00\x00\xe9\xea\xbe\xad\xde\xff\x25\x23\x01\x00" \
  "\x00\xe8\xdf\xbe\xad\xde\x74\xff"
#define X86_CODE16                                                           \
  "\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00\x05\x23\x01\x00\x00\x36" \
  "\x8b\x84\x91\x23\x01\x00\x00\x41\x8d\x84\x39\x89\x67\x00\x00\x8d\x87\x89" \
  "\x67\x00\x00\xb4\xc6\x66\xe9\xb8\x00\x00\x00\x67\xff\xa0\x23\x01\x00\x00" \
  "\x66\xe8\xcb\x00\x00\x00\x74\xfc"
#define X86_CODE32                                                           \
  "\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00\x05\x23\x01\x00\x00\x36" \
  "\x8b\x84\x91\x23\x01\x00\x00\x41\x8d\x84\x39\x89\x67\x00\x00\x8d\x87\x89" \
  "\x67\x00\x00\xb4\xc6\xe9\xea\xbe\xad\xde\xff\xa0\x23\x01\x00\x00\xe8\xdf" \
  "\xbe\xad\xde\x74\xff"

  struct platform platforms[] = {
      {CS_ARCH_X86, CS_MODE_16, (unsigned char *)X86_CODE16,
       sizeof(X86_CODE16) - 1, "X86 16bit (Intel syntax)"},
      {
          CS_ARCH_X86,
          CS_MODE_32,
          (unsigned char *)X86_CODE32,
          sizeof(X86_CODE32) - 1,
          "X86 32 (AT&T syntax)",
          CS_OPT_SYNTAX,
          CS_OPT_SYNTAX_ATT,
      },
      {CS_ARCH_X86, CS_MODE_32, (unsigned char *)X86_CODE32,
       sizeof(X86_CODE32) - 1, "X86 32 (Intel syntax)"},
      {CS_ARCH_X86, CS_MODE_64, (unsigned char *)X86_CODE64,
       sizeof(X86_CODE64) - 1, "X86 64 (Intel syntax)"},
  };

  uint64_t address = 0x1000;
  cs_insn *insn;
  int i;
  size_t count;

  for (i = 0; i < sizeof(platforms) / sizeof(platforms[0]); i++)
  {
    cs_err err = cs_open(platforms[i].arch, platforms[i].mode, &handle);
    if (err)
    {
      printf("Failed on cs_open() with error returned: %u\n", err);
      abort();
    }

    if (platforms[i].opt_type)
      cs_option(handle, platforms[i].opt_type, platforms[i].opt_value);

    cs_option(handle, CS_OPT_DETAIL, CS_OPT_ON);

    count = cs_disasm(handle, platforms[i].code, platforms[i].size, address, 0,
                      &insn);
    if (count)
    {
      size_t j;

      printf("****************\n");
      printf("Platform: %s\n", platforms[i].comment);
      print_string_hex("Code:", platforms[i].code, platforms[i].size);
      printf("Disasm:\n");

      for (j = 0; j < count; j++)
      {
        printf("0x%" PRIx64 ":\t%s\t%s\n", insn[j].address, insn[j].mnemonic,
               insn[j].op_str);
        print_insn_detail(handle, platforms[i].mode, &insn[j]);
      }
      printf("0x%" PRIx64 ":\n", insn[j - 1].address + insn[j - 1].size);

      // free memory allocated by cs_disasm()
      cs_free(insn, count);
    }
    else
    {
      printf("****************\n");
      printf("Platform: %s\n", platforms[i].comment);
      print_string_hex("Code:", platforms[i].code, platforms[i].size);
      printf("ERROR: Failed to disasm given code!\n");
      abort();
    }

    printf("\n");

    cs_close(&handle);
  }
}

capstone_main.nim代码:

{.passC: "-I$HOME/src/capstone/include".}
{.passL: "-L$HOME/src/capstone -lcapstone -static".}
{.compile: "capstone.c".}
proc test(): void {.importc.}

if isMainModule:
  test()

编译:

nim c -d:release capstone_main.nim

标签:case,return,X86,nim,示例,EFLAGS,capstone,printf,x86
From: https://www.cnblogs.com/soarowl/p/18012769

相关文章

  • 策略模式的代码实践示例
    一、定义策略模式,针对每一个不同的类型,调用具有共同接口的不同实现类,从而使得它们可以相互替换。策略模式,针对实现同一接口的不同的类,采用不同的策略。比如,面对高级会员、初级会员会采用不同的折扣。策略模式,可以避免大量的if和else。二、角色策略模式涉及到三个角色:●......
  • CF1771F Hossam and Range Minimum Query 题解
    题目链接:CF或者洛谷比较不错的题,出现奇数次出现的这种问题,比较容易想到一种运算,那就是异或和运算。如果一个区间上一个数出现偶数次,则它对于异或和的贡献为\(0\),那么很显然,我们维护下区间异或和即可判断一个区间上是否存在出现奇数次的数。然后我们注意到\(1\oplus2\oplu......
  • 串口收发浮点数加示例代码(共用体)
    #include"stdio.h"#include"string.h"unionData{charstr[4];//float占用4个字节所以给四个字符floatnum;};intmain(){unionDatasend_data,receive_data;send_data.num=43.43;//通过串口发送43.43,只需要放入共用体里面,然后通过发送四个char数据,下面是......
  • 153. Find Minimum in Rotated Sorted Array
    题目Supposeanarraysortedinascendingorderisrotatedatsomepivotunknowntoyoubeforehand.(i.e., [0,1,2,4,5,6,7] mightbecome [4,5,6,7,0,1,2]).Findtheminelement.Youmayassumenoduplicateexistsinthearray.Example1:Input:[3,4,5,1,2]O......
  • Unity接入 KimiChat 代码示例
    代码usingSystem.Runtime.CompilerServices;usingSystem.Threading.Tasks;usingUnityEngine;usingUnityEngine.Networking;publicclassTestKimi:MonoBehaviour{privatestringapiKey="YourKey";//替换为你的API密钥privatestringapiUrl=......
  • 华为配置访客接入WLAN网络示例(MAC优先的Portal认证)
    配置访客接入WLAN网络示例(MAC优先的Portal认证)组网图形图1 配置WLANMAC优先的Portal认证示例组网图业务需求组网需求数据规划配置思路配置注意事项操作步骤配置文件业务需求某企业为了提高WLAN网络的安全性,采用MAC优先的外置Portal认证方式,实现对用户的接入控制。组网需求AC组网......
  • Animate.css + Vue2
    Animate.css+Vue2包:https://www.npmjs.com/package/vue2-animate安装:npminstall--savevue2-animate导入:import'vue2-animate/dist/vue2-animate.min.css';使用1:<transitionname="fadeLeft"><pv-if="isShow">he......
  • windows栈回溯功能示例——漏洞利用检测
    利用windows栈回溯如何进行漏洞利用检测?利用Windows栈回溯进行漏洞利用检测是一个复杂的过程,它通常涉及监控可疑或危险函数的调用,并分析调用这些函数的上下文来判断是否存在潜在的漏洞利用尝试。这种方法需要深入理解漏洞利用技术、危险函数的正常与异常使用模式,以及堆栈回溯的技......
  • 导出excel文件接口代码示例
    导出excel文件接口代码示例1.该导出接口,token不能通过请求头来传输,需要在get请求的参数中带出来2.验证token的方法除了在拦截器中统一拦截,针对get接口传参数的方式也需要单独在接口中验证。@RequestMapping(value="export",method=RequestMethod.GET)publicString......
  • Unity Animation动画系统概述
    一、UnityAnimation动画系统基本介绍unity提供了一套非常强大灵活且成熟的动画系统,不论是2d还是3d动画都有相应的组件和接口提供给开发者使用,不过这篇文章主要还是讲解3D部分的动画系统。我们在游戏开发时时常需要角色动起来,除了位置上的移动之外,我们还需要匹配角色的行为或玩......