WC2024 被打爆了,呜呜。我赛时会这题 \(8\) 分指数级暴力,哈哈。真不知道自己在干嘛。
下文令 \(T = 2L\)。
考虑如何判定一个序列 \(a\) 是否合法。考虑先枚举一个 \(T\)。因为要求 \(r_i < r_{i + 1}\),考虑讨论相邻两项的取值:
- 若 \(a_i < a_{i + 1}\) 则 \(r_i = a_i, r_{i + 1} = a_{i + 1}\) 可行,也就是若 \(a_i \ge a_{i + 1}\) 则 \(r_i = a_i, r_{i + 1} = a_{i + 1}\) 不可行;
- 若 \(a_i > a_{i + 1}\) 则 \(r_i = T - a_i, r_{i + 1} = T - a_{i + 1}\) 可行,也就是若 \(a_i \le a_{i + 1}\) 则 \(r_i = T - a_i, r_{i + 1} = T - a_{i + 1}\) 不可行;
- 若 \(a_i + a_{i + 1} < T\) 则 \(r_i = a_i, r_{i + 1} = T - a_{i + 1}\) 可行,也就是若 \(a_i + a_{i + 1} \ge T\) 则 \(r_i = a_i, r_{i + 1} = T - a_{i + 1}\) 不可行;
- 若 \(a_i + a_{i + 1} > T\) 则 \(r_i = T - a_i, r_{i + 1} = a_{i + 1}\) 可行,也就是若 \(a_i + a_{i + 1} \le T\) 则 \(r_i = T - a_i, r_{i + 1} = a_{i + 1}\) 不可行。
也就是说:
- 若 \(a_i \le a_{i + 1}\) 且 \(a_i + a_{i + 1} \le T\) 则 \(r_i\) 必须取 \(a_i\);
- 若 \(a_i \le a_{i + 1}\) 且 \(a_i + a_{i + 1} \ge T\) 则 \(r_{i + 1}\) 必须取 \(a_{i + 1}\);
- 若 \(a_i \ge a_{i + 1}\) 且 \(a_i + a_{i + 1} \le T\) 则 \(r_{i + 1}\) 必须取 \(T - a_{i + 1}\);
- 若 \(a_i \ge a_{i + 1}\) 且 \(a_i + a_{i + 1} \ge T\) 则 \(r_i\) 必须取 \(T - a_i\)。
若这个序列不存在一组 \(r\) 则一定能从上述四个条件得出矛盾。有三种矛盾:
- \(a_i = a_{i + 1}, a_i + a_{i + 1} = T\);
- \(a_{i - 1} \le a_i, a_{i - 1} + a_i \ge T, a_i \ge a_{i + 1}, a_i + a_{i + 1} \ge T\);
- \(a_{i - 1} \ge a_i, a_{i - 1} + a_i \le T, a_i \le a_{i + 1}, a_i + a_{i + 1} \le T\)。
考虑不枚举 \(T\) 怎么判合法性。考虑第二种矛盾,相当于若存在 \(i\) 使得 \(a_{i - 1} \le a_i, a_i \ge a_{i + 1}\),那么 \(T > \min(a_{i - 1} + a_i, a_i + a_{i + 1})\),否则就会产生矛盾;类似地考虑第三种矛盾,若存在 \(i\) 使得 \(a_{i - 1} \ge a_i, a_i \le a_{i + 1}\),那么 \(T < \max(a_{i - 1} + a_i, a_i + a_{i + 1})\)。
也就是说对于一些位置有 \(T \in (l_i, r_i)\) 的限制,若最后这些区间交出来不是空集(即 \(\max l_i < \min r_i\))那么就合法。这时候发现第一种矛盾不需要考虑,因为若区间交出来不是空集则 \(T\) 有无限个取值。
回到原题,考虑计算合法的子区间个数。发现对于一个左端点,合法的右端点一定是一段区间。直接二分右端点再判定即可。判定就是判区间 \(\max l_i\) 是否 \(< \min r_i\)。
总时间复杂度 \(O(n \log n)\)。
code
// Problem: P10144 [WC/CTS2024] 水镜
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P10144
// Memory Limit: 512 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mkp make_pair
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 500100;
const int logn = 22;
ll n, a[maxn], f[logn][maxn], g[logn][maxn];
inline ll qmax(int l, int r) {
int k = __lg(r - l + 1);
return max(f[k][l], f[k][r - (1 << k) + 1]);
}
inline ll qmin(int l, int r) {
int k = __lg(r - l + 1);
return min(g[k][l], g[k][r - (1 << k) + 1]);
}
void solve() {
scanf("%lld", &n);
for (int i = 1; i <= n; ++i) {
scanf("%lld", &a[i]);
}
for (int i = 2; i < n; ++i) {
f[0][i] = -1e18;
g[0][i] = 1e18;
if (a[i - 1] <= a[i] && a[i] >= a[i + 1]) {
f[0][i] = min(a[i - 1] + a[i], a[i] + a[i + 1]);
}
if (a[i - 1] >= a[i] && a[i] <= a[i + 1]) {
g[0][i] = max(a[i - 1] + a[i], a[i] + a[i + 1]);
}
}
for (int j = 1; (1 << j) <= n; ++j) {
for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
f[j][i] = max(f[j - 1][i], f[j - 1][i + (1 << (j - 1))]);
g[j][i] = min(g[j - 1][i], g[j - 1][i + (1 << (j - 1))]);
}
}
ll ans = 0;
for (int i = 1; i < n; ++i) {
int l = i + 1, r = n, p = -1;
while (l <= r) {
int mid = (l + r) >> 1;
if (mid - i <= 1 || qmax(i + 1, mid - 1) < qmin(i + 1, mid - 1)) {
p = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
ans += p - i;
}
printf("%lld\n", ans);
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}