首页 > 其他分享 >YOLOv5代码详解1(train.py)

YOLOv5代码详解1(train.py)

时间:2024-01-29 22:11:08浏览次数:40  
标签:opt YOLOv5 nc py results epoch train weights model

YOLOv5代码详解 (第一部分)

1. train.py

1.1 使用nvidia的apex接口计算混合精度训练

mixed_precision = True
try:  # Mixed precision training https://github.com/NVIDIA/apex
    from apex import amp
except:
    print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
    mixed_precision = False  # not installed

1.2 获取文件路径

wdir = 'weights' + os.sep  # weights dir
os.makedirs(wdir, exist_ok=True)
last = wdir + 'last.pt'
best = wdir + 'best.pt'
results_file = 'results.txt'

1.3 获取数据路径

# Configure
    init_seeds(1)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes

1.4 移除之前的结果

# Remove previous results
    for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
        os.remove(f)

1.5 创建模型

# Create model
    model = Model(opt.cfg).to(device)
    assert model.md['nc'] == nc, '%s nc=%g classes but %s nc=%g classes' % (opt.data, nc, opt.cfg, model.md['nc'])
    model.names = data_dict['names']

assert是一个判断表达式,在assert后面成立时创建模型。
参考链接

1.6 检查训练和测试图片尺寸

# Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

1.7 设置优化器参数

# Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.bn' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    optimizer = optim.Adam(pg0, lr=hyp['lr0']) if opt.adam else \
        optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

Optimizer groups: 102 .bias, 108 conv.weight, 99 other
del并非删除数据,而是删除变量(删除指向数据的链接)参考链接

1.8 加载预训练模型和权重,并写入训练结果到results.txt

# Load Model
    google_utils.attempt_download(weights)
    start_epoch, best_fitness = 0, 0.0
    if weights.endswith('.pt'):  # pytorch format
        ckpt = torch.load(weights, map_location=device)  # load checkpoint

        # load model
        try:
            ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
                             if model.state_dict()[k].shape == v.shape}  # to FP32, filter
            model.load_state_dict(ckpt['model'], strict=False)
        except KeyError as e:
            s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s." \
                % (opt.weights, opt.cfg, opt.weights)
            raise KeyError(s) from e

        # load optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # load results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        start_epoch = ckpt['epoch'] + 1
        del ckpt

1.9 把混合精度训练加载入训练中

若之前mixed_precision=False则不会加入混合精度训练至训练中。

if mixed_precision:
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)

opt_level=‘O1’ ,这里不是‘零1’,而是“O1”(偶1)

1.10 设置cosine调度器,定义学习率衰减

# Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    scheduler.last_epoch = start_epoch - 1  # do not move

1.11 定义并初始化分布式训练

# Initialize distributed training
    if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
        dist.init_process_group(backend='nccl',  # distributed backend
                                init_method='tcp://127.0.0.1:9999',  # init method
                                world_size=1,  # number of nodes
                                rank=0)  # node rank
        model = torch.nn.parallel.DistributedDataParallel(model)

当满足上面三个条件(非CPU、cuda设备大于1、分布式torch可用)时,就可以进行分布式训练了。
笔者是用一张卡来训练的,不满足这个条件,没有用到分布式训练。—————————————————————————————————————————
nn.distributedataparallel()支持模型多进程并行,适用于单机或多机,每个进程都具备独立的优化器,执行自己的更新过程。
参考链接

1.12 载入训练集和测试集

# Trainloader
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)

    # Testloader
    testloader = create_dataloader(test_path, imgsz_test, batch_size, gs, opt,
                                            hyp=hyp, augment=False, cache=opt.cache_images, rect=True)[0]

dataloader和testloader不同之处在于:

  1. testloader:没有数据增强,rect=True(大概是测试图片保留了原图的长宽比)
  2. dataloader:数据增强,保留了矩形框训练。

1.13 模型参数

# Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights

1.14 类别统计

# Class frequency
    labels = np.concatenate(dataset.labels, 0)
    c = torch.tensor(labels[:, 0])  # classes
    # cf = torch.bincount(c.long(), minlength=nc) + 1.
    # model._initialize_biases(cf.to(device))
    if tb_writer:
        plot_labels(labels)
        tb_writer.add_histogram('classes', c, 0)

1.15 检查anchors是否存在

# Check anchors
    if not opt.noautoanchor:
        check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

1.16 指数移动平均

# Exponential moving average
    ema = torch_utils.ModelEMA(model)

在深度学习中,经常会使用EMA(指数移动平均)这个方法对模型的参数做平均,以求提高测试指标并增加模型鲁棒。参考博客

1.17 开始训练

1.17.1 获取参数

获取开始时间,batch size数量,epochs数量,图片数量。

# Start training
    t0 = time.time() # start time
    nb = len(dataloader)  # number of batches
    n_burn = max(3 * nb, 1e3)  # burn-in iterations, max(3 epochs, 1k iterations)
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
    print('Using %g dataloader workers' % dataloader.num_workers)
    print('Starting training for %g epochs...' % epochs)
    # torch.autograd.set_detect_anomaly(True)

1.17.2 训练开始

加载图片权重(可选),定义进度条,设置偏差Burn-in,使用多尺度,前向传播,损失函数,反向传播,优化器,打印进度条,保存训练参数至tensorboard,计算mAP,保存结果到results.txt,保存模型(最好和最后)。

    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if dataset.image_weights:
            w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
            image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
            dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n)  # rand weighted idx

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
        pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0

            # Burn-in
            if ni <= n_burn:
                xi = [0, n_burn]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            pred = model(imgs)

            # Loss
            loss, loss_items = compute_loss(pred, targets.to(device), model)
            if not torch.isfinite(loss):
                print('WARNING: non-finite loss, ending training ', loss_items)
                return results

            # Backward
            if mixed_precision:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            # Optimize
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()
                ema.update(model)

            # Print
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
            s = ('%10s' * 2 + '%10.4g' * 6) % (
                '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
            pbar.set_description(s)

            # Plot
            if ni < 3:
                f = 'train_batch%g.jpg' % ni  # filename
                result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                if tb_writer and result is not None:
                    tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        # mAP
        ema.update_attr(model)
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            results, maps, times = test.test(opt.data,
                                             batch_size=batch_size,
                                             imgsz=imgsz_test,
                                             save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
                                             model=ema.ema,
                                             single_cls=opt.single_cls,
                                             dataloader=testloader)

        # Write
        with open(results_file, 'a') as f:
            f.write(s + '%10.4g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
        if len(opt.name) and opt.bucket:
            os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))

        # Tensorboard
        if tb_writer:
            tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
                    'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
            for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                tb_writer.add_scalar(tag, x, epoch)

        # Update best mAP
        fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        if fi > best_fitness:
            best_fitness = fi

        # Save model
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            with open(results_file, 'r') as f:  # create checkpoint
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': f.read(),
                        'model': ema.ema.module if hasattr(model, 'module') else ema.ema,
                        'optimizer': None if final_epoch else optimizer.state_dict()}

            # Save last, best and delete
            torch.save(ckpt, last)
            if (best_fitness == fi) and not final_epoch:
                torch.save(ckpt, best)
            del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

Image sizes 608 train, 608 test(设置训练和测试图片的size)
Using 8 dataloader workers(设置batch size 为8,即一次性输入8张图片训练)
Starting training for 100 epochs… (设置为100个epochs)
——————————————————————————————————————
tqdm是一个快速,可扩展的Python进度条,可以在 Python 长循环中添加一个进度提示信息,用户只需要封装任意的迭代器 tqdm(iterator)。
参考博客
tqdm进度条
python pbar = tqdm(enumerate(dataloader), total=nb) 表示进度条,total=nb 预期的迭代次数,即你上面设置的epochs。
——————————————————————————————————————
results.txt保存结果:
0/49 6.44G 0.09249 0.07952 0.05631 0.2283 6 608 0.1107 0.1954 0.1029 0.03088 0.07504 0.06971 0.03865
epoch, best_fitness, training_results, model, optimizer, img-size, P, R, mAP, F1, test_losses=(GIoU, obj, cls)
(有点对不上,后续再补充)

1.18 定义模型文件名字

    n = opt.name
    if len(n):
        n = '_' + n if not n.isnumeric() else n
        fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
        for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                ispt = f2.endswith('.pt')  # is *.pt
                strip_optimizer(f2) if ispt else None  # strip optimizer
                os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None  # upload

1.19 训练结束,返回结果

    if not opt.evolve:
        plot_results()  # save as results.png
    print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
    dist.destroy_process_group() if device.type != 'cpu' and torch.cuda.device_count() > 1 else None
    torch.cuda.empty_cache()
    return results

50 epochs completed in 11.954 hours.

标签:opt,YOLOv5,nc,py,results,epoch,train,weights,model
From: https://www.cnblogs.com/sutang-shy/p/17995437

相关文章

  • redis模块——python操作redis
    介绍使用python操作redis库中的缓存,常见操作,测试后清除测试数据缓存,测试前清理缓存保证不被之前的测试数据影响到测试准确性使用安装pipinstallredis导入importredis模糊搜索查找keymsp_fc_rule=self.msp_redis.keys('msp-cache-frequency-limit-info:*')循环遍历k......
  • 安装dmPython
    一、安装dmPython对于达梦数据库,必须首先安装dmPython,才可以使用,在$DM_HOME/drivers目录下有多种类型的驱动:[dmdba@dm8~]$cd/dm/dmdbms/drivers/[dmdba@dm8drivers]$lsdcidotNetdpifldrgojdbclogmnrmsgparseodbcphp_pdopythonr2dbc[dmdba@dm8......
  • 在内网(不通公网)的情况下,使用pip安装python依赖包
    1.施工服务器后端部署一:准备一台环境与内网虚拟机相同的可以连接外网的虚拟机,python版本,操作系统版本保持一致二:在可以链接外网的机器上使用pip将依赖包的whl文件(也有可能是tar.gz或者tar格式,不过不影响后续使用)#将依赖下载到本地的某个文件中root@iZ8v2rbZ:/sdwork/pyyl#......
  • python操作yaml
     补充:yaml语法详见:yaml语法 yaml应用场景1、保存测试数据2、也可以保存自动化测试中的关联数据  安装yaml模块pipinstallpyyaml==5.4.1 读取yaml数据读取数据:load()或者full_load(),返回一个对象用例数据:case.yaml-caseId:1apiName:registerdescr......
  • python 14
    1.代码规范程序员写代码四有规范的,不只是实现功能而已。1.1名称在python开发过程中会创建文件夹/文件/变量等,这些在命名有一些潜规则(编写代码时也要注意pep8规范)文件夹,小写&小写下划线连接,例如:commands,data_utils等。文件,小写&小写下划线连接,例如:page.py,db_convert.p......
  • python之常用标准库-configparser
    configparser主要用于生成和修改常见配置文档,所以常见的操作为读和写1.写定义参数变量,赋值直接赋值法conf['test_default']={'test_line1':'test_line1'}通过增加section,set赋值法conf.add_section('test')conf.set('test','test_line1',�......
  • pycharm新建文档自动显示编码格式和作者信息等信息
    1.设置方法setting--editor--fileandcodetemplates--选择pythonscript--输入信息模版--apply2.信息模版--coding:utf-8--"""Author:wrTime:${DATE}${TIME}File:${NAME}.pySoftware:${PRODUCT_NAME}"""从上到下依次是:作者:时间:文件名:ide名称:还......
  • python中get请求传参方式的写法
    get请求分为两大类:无参数和有参数1.无参数2.有参数2.1参数较少2.2参数较多-字典形式2.3参数较多-列表+元祖形式......
  • python版本管理Dynaconf模块
    示例代码importosimportsysfrompathlibimportPathfromdynaconfimportDynaconf_BASE_DIR=Path(__file__).parent.parent_CONFIG_DIR=_BASE_DIR/'config'LOG_DIR=_BASE_DIR/'files'/'logs'TOKEN_FILE=_BASE_DIR/�......
  • 如何在 Python 中使用 jieba 库来进行关键词提取
    jieba是一个流行的中文分词库,通过简单的几行代码,您就可以轻松地使用jieba库来提取中文文本中的关键词。本文将介绍jieba库的安装方法以及关键词提取的示例代码,并希望对您有所帮助。正文:1.安装jieba库:首先,我们需要安装jieba库。可以使用以下命令来安装jieba库:```pipinstalljieba......