首页 > 其他分享 >自然语言处理NLP:情感分析疫情下的新闻数据

自然语言处理NLP:情感分析疫情下的新闻数据

时间:2024-01-29 21:23:14浏览次数:30  
标签:NLP 疫情 新闻 主题 话题 情感 自然语言 数据

原文链接:http://tecdat.cn/?p=12310

原文出处:拓端数据部落公众号

 

新冠肺炎的爆发让今年的春节与往常不同。与此同时,新闻记录下了这场疫情发展的时间轴。

为此我们分析了疫情相关的新闻内容、发布时期以及发布内容的主题和情感倾向这些方面的数据,希望通过这些数据,能对这场疫情有更多的了解。

新闻对疫情相关主题的情感倾向

通过对疫情相关的新闻进行主题分析和情感分析,我们可以得到每个主题的关键词以及情感分布。

图表1

症状检测主题的新闻内容表达出最多积极情感,该话题下讨论的是医院中检测患者的症状,其次是城市服务以及学校相关的新闻内容,讨论了商店关闭,社区隔离和学校延迟开学等话题,生活主题也表达出较多的积极情感(关键词:时间、家庭),疫情增加了家人相处的时间(图1)。

新闻表达的情感倾向随时间变化

考虑到新闻发布的时间、新闻相关的话题因素,图2显示了通过情感交叉分析得到的结果。

图表2

从话题排名来看,不同时间段的新闻中最热门的话题都有经济、出行和政治。从情感分布来看,1月份的经济主题新闻表达出较多的负面情绪(如股市因对冠状病毒的日益关注而下跌)。3月份随着疫情逐渐好转,城市主题新闻(如疫情期间保证商店服务和生产经营)的热度排名超过防护主题(关键词:口罩,洗手,健康等)。从1月到3月,各个主题下的积极情感比例都在不断增加。

新闻对不同主题关键词的关注度

考虑到不同话题的关注度,图3显示了高频关键词的分布。

图表3


从中我们可以看到疫情相关的新闻中最关注的方面,首先是健康,家庭和隔离和出行,其中健康出现的频率最高。然后关注的话题,包含冠状病毒、疫情期间的工作和病毒检测。其次关注的话题包含区分健康和感染的症状。其他关注的热门关键词包含学校、商业、旅行和经济等。

本文章中的所有信息(包括但不限于分析、预测、建议、数据、图表等内容)仅供参考,拓端数据(tecdat)不因文章的全部或部分内容产生的或因本文章而引致的任何损失承担任何责任。


最受欢迎的见解

1.小红书用户行为数据采集洞察:婚礼种草指南

2.机器学习助推快时尚精准销售预测

3.单车上的城市:共享单车数据洞察

4.用机器学习识别不断变化的股市状况—隐马尔科夫模型(HMM)的应用

5.数据盘点:家电线上消费新趋势

6.在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析

7.虎扑论坛基因探秘:社群用户行为数据洞察

8.把握出租车行驶的数据脉搏

9.智能门锁“剁手”数据攻略

标签:NLP,疫情,新闻,主题,话题,情感,自然语言,数据
From: https://www.cnblogs.com/tecdat/p/17995362

相关文章

  • 2024年经济复苏:疫情后的挑战与机遇,如何破局迎来全面复苏
    洞元科技携您共谋未来的经济可持续发展2019年一场突如其来的疫情,让整个中国发生了翻天覆地的变化。由于物理限制和社交距离的要求,许多企业和组织开始加速数字化转型的进程。例如,远程办公、在线教育、数字医疗等领域得到了广泛的应用。甚至改变了很多行业之前的发展轨迹。疫情使......
  • NLP 之四:双向预训练模型
    利用预训练好的模型进行微调(Fine-tune),可以获得比传统模型的巨大提升。此时学习率一般是正常的十分之一(\(10^{-5}\)左右)。也可以保持预训练的参数不变。Transformer架构Encoder-only:擅长分类任务Decoder-only:擅长生成任务Encoder-only:混合情况(例如文本翻译、总结)在无监督......
  • AI_NLP以及DETR的理解-目标检测模型
    目标检测框架CNNbased以及Transformerbased。01.CNNbased通常又可以划分为以FasterRCNN和RetinaNet为代表 和以YOLO系列为代表阈值筛选(Confidencethreshold)和非极大值抑制(NMS)处理两个关键步骤02.Transformerbased目标检测:DETR......
  • 2024年经济复苏:疫情后的挑战与机遇,如何破局迎来全面复苏
    洞元科技携您共谋未来的经济可持续发展2019年一场突如其来的疫情,让整个中国发生了翻天覆地的变化。由于物理限制和社交距离的要求,许多企业和组织开始加速数字化转型的进程。例如,远程办公、在线教育、数字医疗等领域得到了广泛的应用。甚至改变了很多行业之前的发展轨迹。疫情......
  • 带你熟悉NLP预训练模型:BERT
    本文分享自华为云社区《【昇思技术公开课笔记-大模型】Bert理论知识》,作者:JeffDing。NLP中的预训练模型语言模型演变经历的几个阶段word2vec/Glove将离散的文本数据转换为固定长度的静态词向量,后根据下游任务训练不同的语言模型ELMo预训练模型将文本数据结合上下文信息,转换......
  • 如何使用 Python 库来进行自然语言处理
    自然语言处理(NaturalLanguageProcessing,简称NLP)是人工智能领域中的一个重要分支,它涉及文本和语言数据的处理、理解和生成。Python作为一种简洁而强大的编程语言,拥有众多优秀的NLP库,本文将介绍如何使用Python库进行自然语言处理的基本步骤和常用技术。一、安装Python环境和NLP库1.......
  • HanLP — 汉字转拼音 -- JAVA
    目录语料库训练加载语料库训练模型保存模型加载模型计算调用HanLP在汉字转拼音时,可以解决多音字问题,显示输出声调,声母、韵母,通过训练语料库,本文代码为《自然语言处理入门》配套版本HanLP-1.7.5对重载不是重任进行转拼音,效果如下:原文:重载不是重任拼音(数字音调):chong2,zai3,bu......
  • IGC的底层核心结构Transformer是如何彻底改变NLP游戏规则的?OJAC近屿智能带你一探究竟
    没有Transformer,就没有NLP的突破,听起来有些夸张,但事实确实如此。什么是Transformer?Transformer是一种基于注意力机制的神经网络架构。可以用于处理序列数据,被广泛应用于翻译、识别等任务。这种模型的主要特点是使用自注意力机制和位置Embedding来提升语言的表达能力。Transformer模......
  • HanLP — HMM隐马尔可夫模型 -- 维特比(Viterbi)算法 --完整示例代码
    完成代码importpicklefromtqdmimporttqdmimportnumpyasnpimportosdefmake_label(text_str):"""从单词到label的转换,如:今天---->BE麻辣肥牛:--->BMME的--->S"""text_len=len(text_str)iftext_len==1:......
  • NLP 之二:循环神经网络
    我们已经预训练了词向量,接下来考虑设计神经网络解决更具体的问题。自然语言不同于图像信息,例如子结构并不具有连续性等等。诸多困难使得CNN难以沿用,一个代替的方法是RNN。循环神经网络(RNN)一个单隐藏层的MLP形如:$$\bmH=\phi(\bm{XW}+\bm{b})$$即输入\(\bm{X}\),经过全连接的线......