首页 > 其他分享 >AtCoder Beginner Contest 338

AtCoder Beginner Contest 338

时间:2024-01-27 22:46:57浏览次数:28  
标签:dots AtCoder 338 Beginner int times leq tour islands

AtCoder Beginner Contest 338

ABC 切 ABC,什么实力。

C - Leftover Recipes

Problem Statement

Your refrigerator has \(N\) kinds of ingredients. Let us call them ingredient \(1\), \(\dots\), ingredient \(N\). You have \(Q_i\) grams of ingredient \(i\).

You can make two types of dishes. To make one serving of dish A, you need \(A_i\) grams of each ingredient \(i\) \((1 \leq i \leq N)\). To make one serving of dish B, you need \(B_i\) grams of each ingredient \(i\). You can only make an integer number of servings of each type of dish.

Using only the ingredients in the refrigerator, what is the maximum total number of servings of dishes you can make?

Solution

枚举 A 菜品的数量 \(i\)。那么很显然 B 菜品的数量应当小于等于每一个 \(\left \lfloor \frac {q_j - i \times a_j}{b_j} \right \rfloor\),其中 \(1 \le j \le n\),表示有 \(i \times a_j\) 克的配料给 A,剩下的 \(q_j - i \times a_j\) 给 B。

我们希望在满足上述条件的情况下,总的菜数最多。那么取 \(\min_{j = 1}^n \left \lfloor \frac {q_j - i \times a_j}{b_j} \right \rfloor\) 个 B 菜品是最好的选择。

所以答案为:

\[\max_{i = 0}^B \left \{i + \min_{j = 1}^n \left \lfloor \frac {q_j - i \times a_j}{b_j} \right \rfloor \right \} \]

将上面的 \(B\) 设为一个很大的数即可,比如 \(10^6\)。

Code

#include <bits/stdc++.h>

using namespace std;

const int N = 1000010;

int n, q[N], a[N], b[N], res;

int main() {
	cin >> n;
	for (int i = 1; i <= n; ++ i ) cin >> q[i];
	for (int i = 1; i <= n; ++ i ) cin >> a[i];
	for (int i = 1; i <= n; ++ i ) cin >> b[i];
	
	for (int i = 1; i < N; ++ i ) {
		// i 个 A
		int k = 2e9;
		bool flg = false;
		for (int j = 1; j <= n; ++ j ) {
			if (q[j] < i * a[j]) {
				flg = true;
				break;
			}
			if (!b[j]) continue;
			k = min(k, (q[j] - i * a[j]) / b[j]);
		}
		if (flg) break;		// 如果这些配料光做 A 菜品都不够了,直接结束
		res = max(res, i + k);
	}
	cout << res;
	
	return 0;
}

D - Island Tour

Problem Statement

The AtCoder Archipelago consists of \(N\) islands connected by \(N\) bridges. The islands are numbered from \(1\) to \(N\), and the \(i\)-th bridge (\(1\leq i\leq N-1\)) connects islands \(i\) and \(i+1\) bidirectionally, while the \(N\)-th bridge connects islands \(N\) and \(1\) bidirectionally. There is no way to travel between islands other than crossing the bridges.

On the islands, a tour that starts from island \(X_1\) and visits islands \(X_2, X_3, \dots, X_M\) in order is regularly conducted. The tour may pass through islands other than those being visited, and the total number of times bridges are crossed during the tour is defined as the length of the tour.

More precisely, a tour is a sequence of \(l+1\) islands \(a_0, a_1, \dots, a_l\) that satisfies all the following conditions, and its length is defined as \(l\):

  • For all \(j\ (0\leq j\leq l-1)\), islands \(a_j\) and \(a_{j+1}\) are directly connected by a bridge.
  • There are some \(0 = y_1 < y_2 < \dots < y_M = l\) such that for all \(k\ (1\leq k\leq M)\), \(a_{y_k} = X_k\).

Due to financial difficulties, the islands will close one bridge to reduce maintenance costs. Determine the minimum possible length of the tour when the bridge to be closed is chosen optimally.

Solution

Code

E - Chords

Problem Statement

There are \(2N\) points placed at equal intervals on a circle, numbered \(1\) to \(2N\) in a clockwise direction starting from a certain point.

There are also \(N\) chords on the circle, with the \(i\)-th chord connecting points \(A_i\) and \(B_i\). It is guaranteed that all the values \(A_1,\dots,A_N,B_1,\dots,B_N\) are distinct.

Determine whether there is an intersection between the chords.

Solution

首先我们保证 \(a_i < b_i\)。若不满足先把它们交换。

然后圆拆开成一条链。一张官方题解的图示:

img

可以发现,如果两条线 \(x, y\) 有交叉,那么一定有 \(a_x < a_y < b_x < b_y\)。

枚举 \(x\),然后找是否存在一个 \(y\) 满足以上条件。

如果我们令 \(c_i\) 表示在 \(a_x = i\) 时 \(b_x\) 的值。由于 \(a_i, b_i\) 这总共 \(2n\) 个数互不相同,所以 \(c_i\) 是唯一确定的。那么上面的问题其实就是:

是否存在一个 \(a_x < j < b_x\),使得 \(c_j > b_x\)。

这是经典问题。我们只需要求这个区间内的最大值,然后判断是否大于 \(b_x\) 即可。也就是判断:

\[\max_{j = a_x + 1}^{b_x - 1} c_j > b_x \]

这就是静态区间求最大值的问题。ST 表即可。

Code

#include <bits/stdc++.h>

using namespace std;

const int N = 400010, M = 25;

int n, a[N], b[N];
int st[N][M];

int query(int l, int r) {
	if (l > r) return -2e9;
	int k = log2(r - l + 1);
	return max(st[l][k], st[r - (1 << k) + 1][k]);
}

int main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	cin >> n;
	for (int i = 1; i <= n; ++ i ) {
		cin >> a[i] >> b[i];
		if (a[i] > b[i]) swap(a[i], b[i]);
		st[a[i]][0] = max(st[a[i]][0], b[i]);
	}
	
	for (int j = 1; j < M; ++ j )
		for (int i = 1; i + (1 << j) - 1 <= 2 * n; ++ i )
			st[i][j] = max(st[i][j - 1], st[i + (1 << j - 1)][j - 1]);
	
	for (int i = 1; i <= n; ++ i )
		if (query(a[i] + 1, b[i] - 1) > b[i])
			return puts("Yes"), 0;
	
	puts("No");
	
	return 0;
}

标签:dots,AtCoder,338,Beginner,int,times,leq,tour,islands
From: https://www.cnblogs.com/2huk/p/17992293

相关文章

  • AtCoder Beginner Contest 338
    AtCoderBeginnerContest338A-Capitalized?代码:#include<bits/stdc++.h>usingnamespacestd;usingll=longlong;usingpii=pair<ll,ll>;#definefifirst#definesesecondusingi128=__int128_t;voidsolve(){strings;cin&......
  • AtCoder abc336 A-D题代码
    A题:#include<bits/stdc++.h>usingnamespacestd;intmain(){intn;cin>>n;cout<<"L"<<string(n,'o')<<"ng"<<endl;return0;}B题:#include<bits/stdc++......
  • AtCoder Beginner Contest 336
    所有代码都在如下模板中运行#include<bits/stdc++.h>usingnamespacestd;namespacegza{ #defineintlonglong #definepbpush_back #defineMTintTTT=R;while(TTT--) #definepcputchar #defineRread() #definefo(i,a,b)for(inti=a;i<=b;i++) #definerep(......
  • P4338 历史笔记
    神题啊!神题(赞叹)题意形式化题意:给定一棵\(n\)个点的树,第\(i\)个点有点权\(a_i\)。且每个点都有颜色,初始时颜色都为\(1\),第\(i\)个点的颜色是\(c_i\)。你可以对一个点\(x\)进行一次操作:计数有多少\(v\),满足\(v\)在\(x\to1\)的路径(包含\(x\)和\(1\))上,且......
  • P3389 【模板】高斯消元法
    #include<bits/stdc++.h>usingnamespacestd;doublemax(doublea,doubleb){ if(a>=b)returna; if(a<b)returnb;}intn;doublea[1010][1010];doublea1[1010][1010];intmain(){ scanf("%d",&n); for(inti=1;i<=n;i++) { ......
  • AtCoder ABC 266 复盘
    AMiddleLetter水沝淼㵘纯模拟题。根据题意,易得答案。ACCodeBModuloNumber模拟(+数学?)。先\(N\leftarrowN\bmod998244353\),然后\(N\leftarrowN+998244353\(N<0)\),最后输出\(N\)。ACCodeCConvexQuadrilateral数学。有一个公式判断(名字我忘了)可以判断。详见ACC......
  • AtCoder Regular Contest 170 A-C
    A-YetAnotherABProblem贪心。定义下标\(i\)满足\(S[i]=B,T[i]=A\)为\(BA\)型,\(S[i]=B,T[i]=A\)为\(AB\)型,\(AA\)型、\(BB\)型同理。对所有\(BA\)型的下标\(i\)去匹配其右侧的第一个\(AB\)型的下标\(j\),匹配成功则对下标\(i\)和\(j\)进行操作,若无法匹配,则对剩余的\(BA\)型......
  • AtCoder Regular Contest 170 D Triangle Card Game
    洛谷传送门AtCoder传送门赛后调了40min,哈哈。首先先把\(a,b\)排序。考虑先枚举Alice选的数\(a_i\),然后若\(\forallj,\existsk\nei,(a_i,b_j,a_k)\)能组成三角形,Alice就赢了。考虑简化条件。\((x,y,z)\)能形成三角形的充要条件是\(z\in(|x-y|,x+......
  • Toyota Programming Contest 2024#1(AtCoder Beginner Contest 337)
    ToyotaProgrammingContest2024#1(AtCoderBeginnerContest337)A-Scoreboard代码:#include<bits/stdc++.h>usingnamespacestd;usingll=longlong;usingpii=pair<ll,ll>;#definefifirst#definesesecondusingi128=__int128_t;void......
  • AtCoder Beginner Contest 337
    基本情况ABC秒了,D数组在空间复杂度上面第一次疯狂吃亏,吃了两次罚时过。赛后看官方题解,发现C做法薄纱我。C-LiningUp2https://atcoder.jp/contests/abc337/tasks/abc337_c这题一眼链表,我用双向链表实现,代码石山。官方题解就题论题,更本质。其实这题并没必要开双向链......