前言
求解思路比较独特,故做一收集。
典例剖析
解:由 \(a^3=b^2\),变形得到 \(a\cdot a^2=b^2\),故 \(a=\cfrac{b^2}{a^2}\);
同理,由 \(c^5=d^4\),变形得到 \(c\cdot c^4=d^4\),故 \(c=\cfrac{d^4}{c^4}\);
又由 \(c-a=11\),即 \(\cfrac{d^4}{c^4}-\cfrac{b^2}{a^2}=11\),则 \((\cfrac{d^2}{c^2})^2-(\cfrac{b}{a})^2=11\)
故 \((\cfrac{d^2}{c^2}+\cfrac{b}{a})(\cfrac{d^2}{c^2}-\cfrac{b}{a})=11=11\times1\),
又由于 \(\cfrac{d^2}{c^2}+\cfrac{b}{a}>\cfrac{d^2}{c^2}-\cfrac{b}{a}\),故得到方程组如下:
\(\left\{\begin{array}{l}{\cfrac{d^2}{c^2}+\cfrac{b}{a}=11 ①}\\{\cfrac{d^2}{c^2}-\cfrac{b}{a}=1 ②}\end{array}\right.\quad\)
①+② 得到,
①-② 得到,
标签:11,烧脑,收集,cdot,问题,cfrac,得到,array From: https://www.cnblogs.com/wanghai0666/p/17984869