找点问题,第一次尝试着不用极限去做
已知函数\(f(x)=\ln x+\dfrac{1}{x}-1\)
\((1)\) 求\(f(x)\)的最小值
\((2)\) 若\(g(x)=x^2[f(x)+1-a]-x+a\),求\(g(x)\)的零点个数
\((1)\) \(f^{\prime}(x)=\dfrac{1}{x}-\dfrac{1}{x^2}=\dfrac{x-1}{x^2}\)
从而\(f(x)\)在\((0,1)\)递减,在\([1,+\infty)\)上递增
则\(f(x)\geq f(1)=0\)
\((2)\) \(g(x)=x^2\left(\ln x+\dfrac{1}{x}-a\right)-x+a=x^2\ln x-ax^2+a=x^2\left(\ln x+\dfrac{a}{x^2}-a\right)\)
记\(h(x)=\ln x+\dfrac{a}{x^2}-a,h^{\prime}(x)=\dfrac{1}{x}-\dfrac{2a}{x^3}=\dfrac{x^2-2a}{x^3}\)
Case1 当\(a\leq 0\)时,\(h(x)\)单调递增,而\(h(1)=0\),而其又是单调递增的,从而只有一个零点
Case2 当\(a>0\)时,\(h^{\prime}(x)=0\)得\(x_0=\sqrt{2a}\),负根舍去
从而\(h(x)\)在\((0,x_1)\)上单调递减,在\((x_1,+\infty)\)上单调递增
考虑\(h(x_1)=h(\sqrt{2a})\)的正负
\(\varphi(a)=h(\sqrt{2a})=\ln\sqrt{2a}-a+\dfrac{1}{2}=\dfrac{\ln a}{2}-a+\dfrac{1+\ln 2}{2}\)
\(\varphi^{\prime}(a)=\dfrac{1}{2a}-1\),不难得到\(\varphi(a)\geq \varphi\left(\dfrac{1}{2}\right)=0\)
从而Case2.1 当\(a=\dfrac{1}{2}\),\(h(x)\)在\((0,1)\)上递减,在\((1,+\infty)\)上单调递增,而\(h(1)=0\),此时一个零点
Case2.2 当\(a\neq \dfrac{1}{2}\)时,\(\varphi(a)=h(\sqrt{2a})<0\)
Case2.2.1 \(a\in\left(0,\dfrac{1}{2}\right)\),即\(\sqrt{2a}<1\)
现在开始找一个大于\(0\)的点(分析部分)
因\(\ln x\geq 1-\dfrac{1}{x}\),从而\(h(x)=\ln x+\dfrac{a}{x^2}-a>\dfrac{a}{x^2}-\dfrac{1}{x}+1-a=\dfrac{(1-a)x^2-x+a}{x^2}\)
记\(\gamma(x)=(1-a)x^2-x+a=\left[(1-a)x-a\right](x-1)\)
因\(a\in\left(0,\dfrac{1}{2}\right),\dfrac{a}{1-a}<1\)
则得到\(\gamma(x)\)在\(\left(\dfrac{a}{1-a},1\right)\),上为正
从而\(h\left(\dfrac{a}{1-a}\right)>0\),找到了点\(\left(\dfrac{a}{1-a},0\right)\)
则由零点存在定理得到,\(h(x)\)在\(\left(\dfrac{a}{1-a},\sqrt{2a}\right)\)上有唯一零点
在\(x>\sqrt{2a}\)上,因\(h(1)=0\),从而在\(x>\sqrt{2a}\)上有唯一零点
从而,\(a\in\left(0,\dfrac{1}{2}\right)\)有两个零点
Case2.2.2 当\(a\in\left(\dfrac{1}{2},+\infty\right)\)时,则\(\sqrt{2a}>1\)
因\(h(1)=0\),则\(h(x)\)在\((0,\sqrt{2a})\)上有唯一零点
与上面一样,因\(a\in\left(\dfrac{1}{2},+\infty\right),\dfrac{a}{1-a}>1\)
从而\(h\left(\dfrac{a}{1-a}\right)>0\) ,则由零点存在定理,\(h(x)\)在\(\left(\sqrt{2a},\dfrac{a}{1-a}\right)\)上有一个零点
从而\(a\in\left(\dfrac{1}{2},+\infty\right)\)上有两个零点
综上\(a=\dfrac{1}{2}\)或\(a\leq 0\)只有一个零点
\(a>0\)且\(a\neq \dfrac{1}{2}\),有两个零点.
标签:38,导数,dfrac,每日,sqrt,right,2a,零点,left From: https://www.cnblogs.com/manxinwu/p/17983486