首页 > 其他分享 >Bessel 函数的一些性质

Bessel 函数的一些性质

时间:2024-01-17 21:12:23浏览次数:21  
标签:right 函数 dfrac sin mu 性质 Bessel nu left

泊松(Poisson)积分表达式:

\[J_\nu\left(z\right)=\dfrac{\left(z/2\right)^\nu}{\sqrt{\pi}\Gamma\left(\nu+1/2\right)}\int_0^{\pi}\cos\left(z\cos\theta\right)\sin^{2\nu}\theta\mathrm{d}\theta\left(\mathrm{Re}\left(\nu\right)\gt-\dfrac{1}{2}\right) \]

证明:

\[\begin{aligned} \int_0^{\pi/2}\cos\left(z\cos \theta\right)\sin^{2\nu}\theta\mathrm{d}\theta &= \sum\limits_{m=0}^{\infty}\dfrac{\left(-1\right)^m}{\left(2m\right)!}z^{2m}\int_0^{\pi/2}\cos^{2m}u\sin^{2\nu}\theta\mathrm{d}\theta\\ &= \dfrac{1}{2}\sum\limits_{m=0}^{\infty}\dfrac{\left(-1\right)^m}{\left(2m\right)!}\dfrac{\Gamma\left(\nu+1/2\right)\Gamma\left(m+1/2\right)}{\Gamma\left(\nu+m+1\right)}z^{2m}\\ &= \dfrac{\sqrt{\pi}2^{n-1}\Gamma\left(\nu+1/2\right)}{z^{\nu}}J_\nu\left(z\right) \end{aligned} \]

移项即可得到原式。

由这个式子也可以得到

\[\begin{aligned} \int_0^{\pi/2}\sin\left(z\sin\theta\right)\sin\theta\cos^{2\nu}\theta\mathrm{d}\theta &= -\dfrac{1}{z}\int_0^{\pi/2}\cos^{2\nu-1}\theta\sin\theta\mathrm{d}\left(\cos\left(z\sin\theta\right)\right)\\ &= \dfrac{1}{z}\int_0^{\pi/2}\cos\left(z\sin\theta\right)\left(2\nu\cos^{2\nu}\theta-\left(2\nu-1\right)\cos^{2\nu-2}\theta\right)\mathrm{d}\theta\\ &= \dfrac{\sqrt{\pi}}{z}\left(2\nu\dfrac{2^{\nu-1}\Gamma\left(n+1/2\right)}{z^\nu}J_\nu\left(z\right)-\left(2\nu-1\right)\dfrac{\sqrt{\pi}2^{\nu-1}\Gamma\left(\nu-1\right)}{z^{\nu-1}}J_{\nu-1}\left(z\right)\right)\\ &= \dfrac{\sqrt{\pi}2^{\nu-1}\Gamma\left(n+1/2\right)}{z^\nu}\left(\dfrac{2\nu}{z}J_\nu\left(z\right)-J_{\nu-1}\left(z\right)\right)\\ &= \dfrac{\sqrt{\pi}2^{\nu-1}\Gamma\left(n+1/2\right)}{z^\nu}J_{\nu+1}\left(z\right) \end{aligned} \]

移项可以得到

\[J_\nu\left(z\right)=\dfrac{a^{\nu-1}}{\sqrt{\pi}2^{\nu-2}\Gamma\left(\nu-1/2\right)}\int_0^{\pi/2}\cos^{2\nu-2}\theta\sin\left(a\sin\theta\right)\sin\theta\mathrm{d}\theta \]

第一索宁(Sonine)有限积分公式:

\[\int_0^{\pi/2}J_{\nu}\left(z\sin\theta\right)\sin^{\mu+1}\theta\cos^{2\nu-1}\theta\mathrm{d}\theta = \dfrac{2^\nu}{z^{\nu+1}}\Gamma\left(\nu+1\right)J_{\mu+\nu+1}\left(z\right) \]

证明:

\[\begin{aligned} \int_0^{\pi/2}J_{\nu}\left(z\sin\theta\right)\sin^{\mu+1}\theta\cos^{2\nu-1}\theta\mathrm{d}\theta &= \sum\limits_{k=0}^{\infty}\dfrac{\left(-1\right)^k}{k!\Gamma\left(k+\mu+1\right)}\left(\dfrac{z}{2}\right)^{2k+\mu}\int_0^{\pi/2}\sin^{2\mu+2k+1}\theta\cos^{2\nu+1}\theta\mathrm{d}\theta\\ &= \sum\limits_{k=0}^{\infty}\dfrac{\left(-1\right)^k}{2\Gamma\left(\mu+\nu+k+2\right)}\Gamma\left(\nu+1\right)\left(\dfrac{z}{2}\right)^{2k+\mu}\\ &= \dfrac{2^\nu}{z^{\nu+1}}\Gamma\left(\nu+1\right)J_{\mu+\nu+1}\left(z\right) \end{aligned} \]

第二索宁(Sonine)有限积分公式:

\[\begin{aligned} \int_0^{\pi/2}J_{\mu}\left(x\sin\theta\right)J_\nu\left(y\cos\theta\right)\sin^{\mu+1}\theta\cos^{\nu+1}\theta\mathrm{d}\theta = \dfrac{x^\mu y^\nu J_{\mu+\nu+1}\left(\sqrt{x^2+y^2}\right)}{\left(x^2+y^2\right)^{\left(\mu+\nu+1\right)/2}} \end{aligned} \]

证明:,

\[\begin{aligned} \text{LHS} &= \left(\dfrac{x}{2}\right)^\mu\left(\dfrac{y}{2}\right)^\nu\sum\limits_{m=0}^{\infty}\sum\limits_{n=0}^{\infty}\dfrac{x^{2m}y^{2n}}{\Gamma\left(m+\mu+1\right)\Gamma\left(n+\nu+1\right)}\dfrac{\left(-1\right)^{m+n}}{m!n!2^{2m+2n}}\int_0^{\pi/2}\sin^{2m+2\nu+1}\theta\cos^{2n+2\nu+1}\theta\mathrm{d}\theta\\ &= \left(\dfrac{x}{2}\right)^\mu\left(\dfrac{y}{2}\right)^\nu\sum\limits_{m=0}^{\infty}\sum\limits_{n=0}^{\infty}\dfrac{\left(-1\right)^{m+n}}{m!n!2^{2m+2n}}\dfrac{x^{2m}y^{2n}}{2\Gamma\left(m+n+\mu+\nu+2\right)}\\ &= \left(\dfrac{x}{2}\right)^\mu\left(\dfrac{y}{2}\right)^\nu\sum\limits_{t=0}^{\infty}\dfrac{\left(-1\right)^t}{2^{2t+1}t!\Gamma\left(t+\mu+\nu+2\right)}\sum\limits_{m=0}^t\binom{t}{m}x^{2m}y^{2\left(t-m\right)}\\ &= \left(\dfrac{x}{2}\right)^\mu\left(\dfrac{y}{2}\right)^\nu\dfrac{2^{\mu+\nu}}{\left(x^2+y^2\right)^{\left(\mu+\nu+1\right)/2}}\sum\limits_{t=0}^{\infty}\dfrac{\left(-1\right)^t}{t!\Gamma\left(t+\mu+\nu+2\right)}\left(\dfrac{\sqrt{x^2+y^2}}{2}\right)^{2t+\mu+\nu+1}\\ &= \dfrac{x^\mu y^\nu J_{\mu+\nu+1}\left(\sqrt{x^2+y^2}\right)}{\left(x^2+y^2\right)^{\left(\mu+\nu+1\right)/2}} \end{aligned} \]

斯图鲁弗(Struve)积分公式:

\[\int_0^{\infty}\dfrac{J_\mu\left(t\right)J_\nu\left(t\right)}{t^{\mu+\nu}}\mathrm{d}t = \dfrac{\Gamma\left(1/2\right)\Gamma\left(\mu+\nu\right)}{2^{\mu+\nu}\Gamma\left(\mu+\nu+1/2\right)\Gamma\left(\mu+1/2\right)\Gamma\left(\nu+1/2\right)} \]

证明:

将 \(J_\nu\) 的积分表示

\[J_\nu\left(a\right)=\dfrac{a^{\nu-1}}{\sqrt{\pi}2^{\nu-2}\Gamma\left(\nu-1/2\right)}\int_0^{\pi/2}\cos^{2\nu-2}u\sin\left(a\sin u\right)\sin u\mathrm{d}u \]

代入得

\[\int_0^{\infty}\dfrac{J_\mu\left(t\right)J_\nu\left(t\right)}{t^{\mu+\nu}}\mathrm{d}t =\dfrac{\int_0^{\infty}\int_0^{\pi/2}\int_0^{\pi/2}\dfrac{\sin\left(t\sin u\right)\sin\left(t\sin v\right)}{t^2}\cos^{2\mu-2}u\cos^{2\nu-2}v\sin u\sin v\mathrm{d}t\mathrm{d}u\mathrm{d}v}{\pi2^{\mu+\nu-4}\Gamma\left(\mu-1/2\right)\Gamma\left(\nu-1/2\right)} \]

令 \(\alpha=\sin u,\beta=\sin v\),则 \(0\le \alpha,\beta\le 1\),

\[\begin{aligned} \int_0^{\infty}\dfrac{\sin\alpha t\sin\beta t}{t^2}\mathrm{d}t &= \dfrac{1}{2}\int_0^{\infty}\dfrac{\cos\left(\alpha-\beta\right)t-\cos\left(\alpha+\beta\right)t}{t^2}\mathrm{d}t\\ &=\dfrac{1}{2}\left[\int_0^{\infty}\dfrac{1-\cos 2\beta t}{t^2}\mathrm{d}t+\int_{\beta}^{\alpha}\int_0^{\infty}\dfrac{-\sin\left(\alpha'-\beta\right)t+\sin\left(\alpha'+\beta\right)t}{t}\mathrm{d}\alpha'\mathrm{d}t\right] \end{aligned} \]

对于第一个积分,

\[\int_0^{\infty}\dfrac{1-\cos 2\beta t}{t^2}\mathrm{d}t = 2\int_0^{\infty}\dfrac{\sin^2\beta t}{t^2}\mathrm{d}t = \pi\beta \]

\[\int_0^{\infty}\dfrac{\sin \alpha x}{x}\mathrm{d}x=\begin{cases}\dfrac{\pi}{2}, & \alpha\gt 0\\-\dfrac{\pi}{2}, & \alpha\lt 0\end{cases} \]

因此

\[\int_0^{\infty}\dfrac{-\sin\left(\alpha'-\beta\right)t+\sin\left(\alpha'+\beta\right)t}{t}\mathrm{d}\alpha' = \begin{cases}\pi,&\alpha'\lt \beta\\0, & \alpha'\gt \beta\end{cases} \]

\[\int_0^{\infty}\dfrac{\sin\alpha t\sin\beta t}{t^2}\mathrm{d}t=\pi\min\left(\alpha,\beta\right) \]

因此

\[\begin{aligned} \int_0^{\infty}\dfrac{J_\mu\left(t\right)J_\nu\left(t\right)}{t^{\mu+\nu}}\mathrm{d}t &= \dfrac{\int_0^{\infty}\int_0^{\pi/2}\int_0^{\pi/2}\dfrac{\sin\left(t\sin u\right)\sin\left(t\sin v\right)}{t^2}\cos^{2\mu-2}u\cos^{2\nu-2}v\sin u\sin v\mathrm{d}t\mathrm{d}u\mathrm{d}v}{\pi2^{\mu+\nu-3}\Gamma\left(\mu-1/2\right)\Gamma\left(\nu-1/2\right)}\\ &= \dfrac{\int_0^{\pi/2}\int_0^{u}\cos^{2\mu-2}u\cos^{2\nu-2}v\sin u\sin^2 v\mathrm{d}u\mathrm{d}v+\int_0^{\pi/2}\int_0^{v}\cos^{2\mu-2}u\cos^{2\nu-2}v\sin^2 u\sin v\mathrm{d}v\mathrm{d}u}{2^{\mu+\nu-3}\Gamma\left(\mu-1/2\right)\Gamma\left(\nu-1/2\right)}\\ &= \dfrac{\dfrac{1}{2\mu-1}\int_0^{\pi/2}\cos^{2\mu+2\nu-3}v\sin^2 v\mathrm{d}v+\dfrac{1}{2\nu-1}\int_0^{\pi/2}\cos^{2\mu+2\nu-3}u\sin^2 u\mathrm{d}u}{2^{\mu+\nu-3}\Gamma\left(\mu-1/2\right)\Gamma\left(\nu-1/2\right)}\\ &= \dfrac{\Gamma\left(3/2\right)\Gamma\left(\mu+\nu-1\right)\left(\mu+\nu-1\right)}{\left(2\mu-1\right)\left(2\nu-1\right)2^{\mu+\nu-3}\Gamma\left(\mu-1/2\right)\Gamma\left(\nu-1/2\right)\Gamma\left(\mu+\nu+1/2\right)}\\ &= \dfrac{\Gamma\left(1/2\right)\Gamma\left(\mu+\nu\right)}{2^{\mu+\nu}\Gamma\left(\mu+\nu+1/2\right)\Gamma\left(\mu+1/2\right)\Gamma\left(\nu+1/2\right)} \end{aligned} \]

得证。

题外话:
这篇文章写于期末出分后,交上去用来防止绩点挂得太惨。主要内容都是从书上抄的。
学了一个学期数理方程,每个星期都会花接近一天时间,最后仍然得到了很烂的成绩。
能力确实不行。以后这博客也不一定更得动了。

标签:right,函数,dfrac,sin,mu,性质,Bessel,nu,left
From: https://www.cnblogs.com/bestlxm/p/17971191

相关文章

  • 函数2
    函数参数传递的问题传递的是地址值还是数值呢?deffun1(a1):print(a1)name='xiaohu'fun1(name)python中函数的调用参数传递的是地址值========================deffun1(a1):a1.append(666)list1=[1,2,3]fun1(list1)print(list1)==========================de......
  • 函数练习1
    练习:定义一个函数,函数接收2个参数,第一个参数是一个大字符串,第二个参数是一个字符,函数功能是判断该字符在大字符串中出现的次数defget_str_count(big_str,s):count=0foriinbig_str:ifi==s:count+=1print(f'{s}字符在大字符串中共出现了{count}次。。')get_str_count(......
  • 函数
    语句定义格式:def函数名(..):代码块调用函数函数名(..)函数名(..)定义defprint_info():print('dyj大sb')print(666)a1=10b1=11c1=a1+b1print(c1)调用print_info()importfileinputimporttime编写函数的注意事项函数的名字,尽量使用小写英文单词,使用下划线拼......
  • 函数作用域(二)
    '''作用域:变量的作用范围全局变量:定义在函数外部的变量局部变量:定义在函数内部的变量函数内部可以访问全局变量,但是不能直接修改如果要修改全局变量,需要借助关键字global声明函数内部用global修改了全局变量那么全局变量已经被修改了'''n=100deffunc():globaln#声明全......
  • 【学习笔记】数论函数与莫比乌斯反演
    一.数论函数基础数论函数:满足值域为整数的函数。本文下述的数若无特殊说明均为整数。若无特殊说明则钦定\(\displaystylen=\prod_{i=1}^kp_i^{e_i},p_i\in\mathbb{P}\)。\(\mathbb{P}\)表示质数集合,\(p_i\)互不相同。介绍几个常见的数论函数:\(I(n)\):恒等函数,无论\(n\)......
  • 无涯教程-SQL Numeric Functions函数
    SQL数字函数主要用于数字操作和/或数学计算。下表详细介绍了数字函数-Sr.No.Function&描述1ABS()返回数值表达式的绝对值。2ACOS()返回数值表达式的反余弦值。如果该值不在-1到1之间,则返回NULL。3ASIN()返回数字表达式的反正弦值。如果值不在-1到1的范围内,则返......
  • C++中setw和setfill函数的结合应用
    一、头文件头文件为#include<iomanip>其中io代表输入输出,manip是manipulator(操纵器)的缩写iomanip的作用:主要是对cin,cout之类的一些操纵运算子,比如setfill,setw,setbase,setprecision等等。它是I/O流控制头文件,就像C里面的格式化输出一样。二、setw函数s......
  • 无涯教程-SQL RAND Function函数
    SQL具有RAND函数,可以调用该函数以生成介于0和1之间的随机数-SQL>SELECTRAND(),RAND(),RAND();+------------------+-----------------+------------------+|RAND()|RAND()|RAND()|+------------------+-----------------+-----......
  • 无涯教程-SQL SUM Function函数
    SQLSUM函数用于查找各种记录中一个字段的总和。要了解SUM函数,请考虑一个employee_tbl表,该表具有以下记录-SQL>SELECT*FROMemployee_tbl;+------+------+------------+--------------------+|id|name|work_date|daily_typing_pages|+------+------+---......
  • 图解函数脚本处理传入参数
    1.函数脚本传入参数:1.1.先修改函数脚本文件: 1.2.开发一个新脚本,执行该函数: 1.3.执行该脚本func3.sh:2.图解shell脚本处理参数: ......