首页 > 其他分享 >【树上DP前导知识汇总】

【树上DP前导知识汇总】

时间:2024-01-17 11:01:32浏览次数:31  
标签:sz 重心 int 汇总 son add 前导 节点 DP

一、树的直径

记录最长、次长,输出 \(max(最长+次长)\)

\(AcWing\) \(1072\) 树的最长路径

#include <bits/stdc++.h>

using namespace std;
const int N = 10010, M = N << 1;
int n; // n个结点

// 链式前向星
int h[N], e[M], w[M], ne[M], idx;
void add(int a, int b, int c) {
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int ans;            // 答案,直径
int mx1[N], mx2[N]; // mx1[i],mx2[i]:经过i点的最长,次长长度是多少

void dfs(int u, int fa) {
    for (int i = h[u]; ~i; i = ne[i]) {
        int v = e[i];
        if (v == fa) continue; // v点访问过了

        // 走v子树,完成后,v子树中每个节点的mx1[v],mx2[v]都已经准备好,u节点可以直接利用
        dfs(v, u);

        // w[i]:u->v的路径长度,mx1[u]:最长路径,mx2[u]:次长路径
        int x = mx1[v] + w[i];
        if (mx1[u] <= x)                 // v可以用来更新u的最大值
            mx2[u] = mx1[u], mx1[u] = x; // 最长路转移
        else if (mx2[u] < x)
            mx2[u] = x; // 次长路转移
    }
    // 更新结果
    ans = max(ans, mx1[u] + mx2[u]);
}

int main() {
    cin >> n;
    memset(h, -1, sizeof h);      // 初始化邻接表
    for (int i = 1; i < n; i++) { // n-1条边
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c), add(b, a, c); // 换根dp一般用于无向图
    }
    dfs(1, 0); // 任选一个点作为根节点,此处选择的是肯定存在的1号结点
    cout << ans << endl;
    return 0;
}

二、树的中心

\(AcWing\) \(1073\). 树的中心

#include <bits/stdc++.h>
using namespace std;

const int N = 10010, M = N << 1;
const int INF = 0x3f3f3f3f;

int n;      // n个节点
int mx1[N]; // mx1[u]:u节点向下走的最长路径的长度
int mx2[N]; // mx2[u]:u节点向下走的次长路径的长度
int id[N];  // id[u]:u节点向下走的最长路径是从哪一个节点下去的
int up[N];  // up[u]:u节点向上走的最长路径的长度

// 邻接表
int e[M], h[N], idx, w[M], ne[M];
void add(int a, int b, int c = 0) {
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

// 功能:以u为根,向叶子进行递归,利用子节点返回的最长信息,更新自己的最长和次长,并记录最长是从哪个节点来的
void dfs1(int u, int fa) {
    for (int i = h[u]; ~i; i = ne[i]) {
        int v = e[i];
        if (v == fa) continue;

        // 递归完才能有数据
        dfs1(v, u);
        int x = mx1[v] + w[i]; // u问到:儿子v可以带我走多远?
        if (mx1[u] < x) {      // 更新最长
            mx2[u] = mx1[u];   // ① 更新次长
            mx1[u] = x;        // ② 更新最长
            id[u] = v;         // ③ 记录最长来源
        } else if (mx2[u] < x) // 更新次长
            mx2[u] = x;
    }
}

// 功能:完成向上的信息填充
void dfs2(int u, int fa) {
    for (int i = h[u]; ~i; i = ne[i]) {
        int v = e[i];
        if (v == fa) continue;
        // 二者取其一
        if (id[u] == v)
            up[v] = max(mx2[u], up[u]) + w[i];
        else
            up[v] = max(mx1[u], up[u]) + w[i];
        // 递归
        dfs2(v, u);
    }
}

int main() {
    memset(h, -1, sizeof h);
    cin >> n;
    for (int i = 1; i < n; i++) {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c), add(b, a, c);
    }
    dfs1(1, 0); // 选择任意一个节点进行dfs,用儿子更新父亲的统计信息
    dfs2(1, 0); // 向上

    int res = INF;
    for (int i = 1; i <= n; i++) res = min(res, max(mx1[i], up[i]));
    printf("%d\n", res);

    return 0;
}

三、树的重心

\(CF1406C\). \(Link\) \(Cut\) \(Centroids\)

账号:\([email protected]\) 密码:\(m****2\)
关键词求树的重心

题目大意
给你一棵树的结点数\(n\)和\(n-1\)条边,你可以删除一条边再增加一条边,使得树的重心唯一,输出这条边

注意:有\(Specail\) \(Judge\),如果删除哪条都行,那就随意删除一条就行

告诉你的已知性质
① 删除重心后所得的所有子树,节点数不超过原树的\(1/2\),一棵树最多有两个重心
② 树中所有节点到重心的距离之和最小,如果有两个重心,那么他们距离之和相等
③ 两个树通过一条边合并,新的重心在原树两个重心的路径上
④ 树删除或添加一个叶子节点,重心最多只移动一条边
⑤ 一棵树最多有两个重心,且相邻

树的重心定义为树的某个节点,当去掉该节点后,树的各个连通分量中,节点数最多的连通分量其节点数达到最小值。树可能存在多个重心。如下图,当去掉点\(1\)后,树将分成两个连通块:\((2,4,5),(3,6,7)\),则最大的连通块包含节点个数为\(3\)。若去掉点\(2\),则树将分成\(3\)个部分,\((4),(5),(1,3,6,7)\)最大的连通块包含\(4\)个节点;第一种方法可以 得到更小的最大联通分量。可以发现,其他方案不可能得到比\(3\)更小的值了。所以,点\(1\)是树的重心。

思路

  • 如果找到只有一个重心,那么直接删一个重心的直连边然后加回去就好
  • 如果找到两个重心,那么在其中一个重心上找到一个直连点不是另一个重心,删除连另外一个就好

如何求树的重心?

1、先任选一个结点作为根节点(比如\(1\)号节点),把无根树变成有根树。然后设\(sz[i]\)表示以\(i\)为根节点的子树节点个数。转移方程为\(\displaystyle sz[u]=\sum_{son[u]=v} (sz[v])\)

2、设\(son[i]\)表示删去节点\(u\)后剩下的连通分量中最大子树节点个数。其中一部分在原来\(i\)其为根的子树。

\[son[i]=\max_{\substack{j \in son[i]}}(son[i],sz[j]) \]

另外一部分在\(i\)的 上方 子树有\(n-sz[i]\)个。

\[son[i]=max(son[i],n-sz[i]) \]

3、利用重心性质: ① 树必须存在\(1\)或\(2\)个重心 , ② 如果某个点是重心,那么把它拿下后,其它连通块的个数都需要小于等于整棵树节点个数的一半。 满足条件 ② 的结点数量不会超过\(2\)个!分别记录为\(r_1,r_2\)。

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, M = N << 1;
#define int long long
#define endl "\n"

// 链式前向星
int e[M], h[N], idx, w[M], ne[M];
void add(int a, int b, int c = 0) {
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

int sz[N];  // sz[i]:以i为根的子树中节点个数
int son[N]; // son[i]:去掉节点i后,剩下的连通分量中最大子树节点个数
int r1, r2, n;

void dfs(int u, int fa) {
    sz[u] = 1;  // u为根的子树中,最起码有一个节点u
    son[u] = 0; // 把节点u去掉后,剩下的连通分量中最大子树节点个数现在还不知道,预求最大,先设最小

    for (int i = h[u]; ~i; i = ne[i]) { // 枚举u的每一条出边
        int v = e[i];
        if (v == fa) continue;
        dfs(v, u);                   // 先把v为根的子树遍历完
        sz[u] += sz[v];              // 把 v中获取填充的sz[v]值,用于组装自己sz[u]
        son[u] = max(son[u], sz[v]); // 如果把u节点去掉,那么它的所有子节点v为根的子树中节点数,可以参加评选:
        // 评选的标准是:son[i]:去掉节点i后,剩下的连通分量中最大子树节点个数
    }
    son[u] = max(son[u], n - sz[u]);         // 右上角的那一块也可能成为评选的获胜者
    if ((son[u] << 1) <= n) r2 = r1, r1 = u; // 删除重心后所得的所有子树,节点数不超过原树的1/2,一棵树最多有两个重心
    // 如果模拟u被删除后,得到的所有子树中节点数量最多的没有超过原树的1/2,那么这个r1=u表示:找到了一个重心u
    // r2=r1表示:如果找到两个重心,那么r1,r2 一人一个,此时,r1中肯定有值,但 r2不一定有值
}

signed main() {
    int T;
    cin >> T;
    while (T--) {
        cin >> n;
        // 多组测试数据,清空
        memset(sz, 0, sizeof sz);
        memset(son, 0, sizeof son);
        // 初始化链式前向星
        memset(h, -1, sizeof h);
        idx = 0;

        r1 = r2 = 0;                  // 重心清零
        for (int i = 1; i < n; i++) { // n-1条边
            int x, y;
            cin >> x >> y;
            add(x, y), add(y, x);
        }
        dfs(1, 0); // 以1号点为入口,它的父节点是0

        if (r2 == 0) { // 如果只有一个重心,r2=0表示没有第二个重心
            int u = r1, v = e[h[u]];
            cout << u << " " << v << endl; // 切掉一条边u->v
            cout << u << " " << v << endl; // 加一条边 u->v
        } else {                           // 如果有两个重心
            int u = r2, v;
            for (int i = h[u]; ~i; i = ne[i]) { // 不要删除掉两个重心相连接的那条边
                v = e[i];
                if (v != r1) break; // 只要对方节点不是另一个重心,那么就是可以删除的
            }
            cout << u << " " << v << endl;  // 切一条边u->v,第二个重心所在边需要被切掉
            cout << v << " " << r1 << endl; // 加一条边v->r1,不走u了,走了u的一个子节点v
        }
    }
    return 0;
}

标签:sz,重心,int,汇总,son,add,前导,节点,DP
From: https://www.cnblogs.com/littlehb/p/17969449

相关文章

  • 知识汇总:查看linux服务器系统命令
    要查看Linux服务器的系统信息,你可以使用多种命令来获取不同类型的信息。以下是一些常用的命令和它们的用途:uname -显示基本的系统信息uname-a:显示所有的系统信息,包括内核名称、主机名、内核发行版本、内核版本、机器类型、处理器类型、硬件平台和操作系统。hostnamectl......
  • E2. Minibuses on Venus (medium version)(卷积加速dp)
    数的范围是在k进制下的n位数一个数是lucky的当且仅当在k进制下,存在一个数位上的数,等于其他数位上的数在模k意义下的和。利用减法原理假设一个数的数位和为s,如果存在一个数,那么有s-x%k=x%k->s%k=2x%k那么我们找到这样的x,就是说在计算和为s的方案数是不能使用这些x类似于dp......
  • m基于码率兼容打孔LDPC码ms最小和译码算法的LDPC编译码matlab误码率仿真
    1.算法仿真效果matlab2022a仿真结果如下:2.算法涉及理论知识概要码率兼容打孔LDPC码BP译码算法是一种改进的LDPC译码算法,能够在不同码率下实现更好的译码性能。该算法通过在LDPC码中引入打孔操作,使得码率可以灵活地调整,同时利用BP(BeliefPropagation)译码算法进行迭代译码,提高了......
  • m基于码率兼容打孔LDPC码ms最小和译码算法的LDPC编译码matlab误码率仿真
    1.算法仿真效果matlab2022a仿真结果如下:    2.算法涉及理论知识概要       码率兼容打孔LDPC码BP译码算法是一种改进的LDPC译码算法,能够在不同码率下实现更好的译码性能。该算法通过在LDPC码中引入打孔操作,使得码率可以灵活地调整,同时利用BP(BeliefPropagation......
  • 网络编程之基于UDP协议的socket套接字编程
    基于UDP的套接字udp是无链接的,先启动哪一端都不会报错【1】方法简介(1)UDP服务端server=socket()#创建一个服务器的套接字server.bind()#绑定服务器套接字inf_loop:#服务器无限循环conn=server.recvfrom()/conn.sendto()#对话(接收与发送)serv......
  • 网络编程TCP UDP
    网络编程(1)什么是网络编程网络编程是指通过编程语言在计算机之间建立通信的一种方式。它是在互联网上进行数据传输的关键组成部分,使计算机能够相互通信、交换信息和共享资源。网络编程涉及许多不同的技术和协议,包括TCP/IP(传输控制协议/因特网协议),HTTP(超文本传输协议),FTP(文件传......
  • 「数位dp」统计整数数目(力扣第2719题)
    本题为1月16日力扣每日一题题目来源:力扣第2719题题目tag:数位dp动态规划题面题目描述给你两个数字字符串num1和num2,以及两个整数max_sum和min_sum。如果一个整数x满足以下条件,我们称它是一个好整数:\(num1\leqx\leqnum2\)\(min\_sum\leqdigit\_sum(x)\leqmax\_s......
  • Mybatis面试题汇总(36)
    对MyBatis的认识[4]简单介绍下MyBatisMyBatis是一款优秀的持久层框架,它支持自定义SQL、存储过程以及高级映射。MyBatis免除了几乎所有的JDBC代码以及设置参数和获取结果集的工作。MyBatis可以通过简单的XML或注解来配置和映射原始类型、接口和JavaPOJO(PlainOldJava......
  • Scoket层(TCP,TDP)
    【一】Scoket层在哪还是用图来说话,一目了然。【二】什么是socketSocket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面对用户来说,一组简单的接口就是全部,让Socket去组织......
  • SqlSugar常见问题汇总
    1、已有打开的与此Command相关联的DataReader,必须首先将它关闭。ThereisalreadyanopenDataReaderassociatedwiththisConnectionwhichmustbeclosedfirst.或者出现connectionisclosed出现这个错一般是线程安全引起的解决方案: https://www.donet5.com/Home/......