首页 > 其他分享 >深度学习pytorch常用操作以及流程

深度学习pytorch常用操作以及流程

时间:2024-01-15 21:23:39浏览次数:38  
标签:tensor nn 流程 torch 张量 pytorch 深度 import model

在微信公众号上看到这篇文章,担心以后想找的时候迷路,所以记录到了自己的博客上,侵扰致歉,随时联系可删除。

1.基本张量操作

1. 1 创建张量

介绍: torch.tensor() 是 PyTorch 中用于创建张量的基本函数。

简单使用:

import torch

# 创建一个标量(零维张量)
scalar_tensor = torch.tensor(42)
print(scalar_tensor)

# 创建一个一维张量
vector_tensor = torch.tensor([1, 2, 3])
print(vector_tensor)

# 创建一个二维张量
matrix_tensor = torch.tensor([[1, 2], [3, 4]])
print(matrix_tensor)

1.2 张量形状变换

介绍: torch.view() 用于改变张量的形状,但要确保元素数量不变。

简单使用:

import torch

# 创建一个一维张量
original_tensor = torch.arange(1, 9)  # 1, 2, 3, ..., 8
print("原始张量:", original_tensor)

# 将一维张量转换为二维张量
reshaped_tensor = original_tensor.view(2, 4)
print("形状变换后的张量:", reshaped_tensor)

1.3 张量拼接

介绍: torch.cat() 用于沿指定维度拼接张量。

简单使用:

import torch

# 创建两个张量
tensor1 = torch.tensor([[1, 2], [3, 4]])
tensor2 = torch.tensor([[5, 6]])

# 沿着行维度拼接张量
concatenated_tensor = torch.cat((tensor1, tensor2), dim=0)
print("拼接后的张量:", concatenated_tensor)

1.4 张量索引与切片

介绍: 使用索引和切片可以获取张量的特定元素或子集。

简单使用:

import torch

# 创建一个二维张量
matrix_tensor = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 获取第一行
first_row = matrix_tensor[0, :]
print("第一行:", first_row)

# 获取第一列
first_column = matrix_tensor[:, 0]
print("第一列:", first_column)

# 切片获取子集
subset_tensor = matrix_tensor[1:, 1:]
print("子集张量:", subset_tensor)

2.重要的张量处理方式

2.1 张量转置

介绍: torch.t() 用于计算矩阵的转置。

简单使用:

import torch

# 创建一个二维张量
matrix_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])

# 计算转置
transposed_tensor = torch.t(matrix_tensor)
print("转置后的张量:", transposed_tensor)

2.2 矩阵乘法

介绍: torch.mm() 用于计算两个矩阵的乘积。

简单使用:

import torch

# 创建两个矩阵
matrix1 = torch.tensor([[1, 2], [3, 4]])
matrix2 = torch.tensor([[5, 6], [7, 8]])

# 计算矩阵乘积
result_matrix = torch.mm(matrix1, matrix2)
print("矩阵乘积:", result_matrix)

2.3 元素级乘法

介绍: torch.mul() 用于执行两个张量的元素级乘法。

简单使用:

import torch

# 创建两个张量
tensor1 = torch.tensor([[1, 2], [3, 4]])
tensor2 = torch.tensor([[5, 6], [7, 8]])

# 元素级乘法
result_tensor = torch.mul(tensor1, tensor2)
print("元素级乘法结果:", result_tensor)

2.4 求和

介绍: torch.sum() 用于计算张量元素的和。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1, 2], [3, 4]])

# 计算张量元素的和
sum_result = torch.sum(tensor)
print("张量元素的和:", sum_result)

2.5 平均值

介绍: torch.mean() 用于计算张量元素的平均值。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算张量元素的平均值
mean_result = torch.mean(tensor)
print("张量元素的平均值:", mean_result)

3.张量:数学和统计功能

3.1 标准差

介绍: torch.std() 用于计算张量元素的标准差。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算张量元素的标准差
std_result = torch.std(tensor)
print("张量元素的标准差:", std_result)

3.2 最大值

介绍: torch.max() 用于找到张量中的最大值及其索引。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1, 2], [3, 4]])

# 找到张量中的最大值及其索引
max_value, max_index = torch.max(tensor, dim=1)
print("最大值:", max_value)
print("最大值索引:", max_index)

3.3 最小值

介绍: torch.min() 用于找到张量中的最小值及其索引。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1, 2], [3, 4]])

# 找到张量中的最小值及其索引
min_value, min_index = torch.min(tensor, dim=1)
print("最小值:", min_value)
print("最小值索引:", min_index)

3.4 绝对值

介绍: torch.abs() 用于计算张量元素的绝对值。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[-1, 2], [-3, 4]])

# 计算张量元素的绝对值
abs_result = torch.abs(tensor)
print("张量元素的绝对值:", abs_result)

3.5 指数运算

介绍: torch.exp() 用于计算张量元素的指数。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算张量元素的指数
exp_result = torch.exp(tensor)
print("张量元素的指数:", exp_result)

3.6 对数运算

介绍: torch.log() 用于计算张量元素的自然对数。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算张量元素的自然对数
log_result = torch.log(tensor)
print("张量元素的自然对数:", log_result)

4.张量:深度学习方面的操作

4.1 向下取整

介绍: torch.floor() 用于将张量元素向下取整,得到不超过每个元素的最大整数。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.2, 2.8], [3.5, 4.1]])

# 向下取整
floor_result = torch.floor(tensor)
print("向下取整结果:", floor_result)

4.2 向上取整

介绍: torch.ceil() 用于将张量元素向上取整,得到不小于每个元素的最小整数。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.2, 2.8], [3.5, 4.1]])

# 向上取整
ceil_result = torch.ceil(tensor)
print("向上取整结果:", ceil_result)

4.3 梯度清零

介绍: 在训练深度学习模型时,使用 optimizer.zero_grad() 将梯度清零是一个常见的步骤,以防止梯度累积。

简单使用:

import torch
import torch.optim as optim

# 创建一个模型和优化器
model = torch.nn.Linear(3, 1)
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 前向传播、反向传播、梯度清零
input_data = torch.randn(10, 3)
output = model(input_data)
loss = torch.nn.functional.mse_loss(output, torch.randn(10, 1))
loss.backward()
optimizer.zero_grad()

4.4 梯度裁剪

介绍: 用于防止梯度爆炸的技术,通过对模型的梯度进行裁剪。

简单使用:

import torch
import torch.nn as nn
import torch.optim as optim

# 创建一个模型和优化器
model = nn.Linear(3, 1)
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 前向传播、反向传播
input_data = torch.randn(10, 3)
output = model(input_data)
loss = torch.nn.functional.mse_loss(output, torch.randn(10, 1))
loss.backward()

# 梯度裁剪
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()

4.5 数据加载与处理

介绍: torch.utils.data 模块提供了用于加载和处理数据的工具,包括 DataLoaderDataset 等类。

简单使用:

import torch
from torch.utils.data import DataLoader, Dataset

# 自定义数据集类
class CustomDataset(Dataset):
    def __init__(self, data):
        self.data = data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        return self.data[index]

# 创建自定义数据集实例
my_dataset = CustomDataset([1, 2, 3, 4, 5])

# 创建数据加载器
data_loader = DataLoader(my_dataset, batch_size=2, shuffle=True)

# 迭代数据加载器
for batch in data_loader:
    print("Batch:", batch)

5.训练和优化的核心概念

5.1 模型定义与搭建

介绍: torch.nn.Module 是 PyTorch 中用于定义和搭建模型的基类。通过继承该类,可以创建自定义的深度学习模型。

简单使用:

import torch
import torch.nn as nn

# 自定义模型类
class SimpleModel(nn.Module):
    def __init__(self, input_size, output_size):
        super(SimpleModel, self).__init__()
        self.linear = nn.Linear(input_size, output_size)

    def forward(self, x):
        return self.linear(x)

# 创建模型实例
model = SimpleModel(input_size=10, output_size=5)

# 查看模型结构
print(model)

5.2 损失函数

介绍: torch.nn.functional 模块提供了多种损失函数,例如均方误差损失(mse_loss)、交叉熵损失(cross_entropy)等。

简单使用:

import torch
import torch.nn.functional as F

# 创建模型输出和目标标签
output = torch.randn(3, 5)
target = torch.randint(5, (3,), dtype=torch.long)

# 计算交叉熵损失
loss = F.cross_entropy(output, target)
print("交叉熵损失:", loss.item())

5.3 优化器

介绍: torch.optim 模块提供了多种优化器,例如随机梯度下降(SGD)、Adam 等。

简单使用:

import torch
import torch.optim as optim

# 创建模型和优化器
model = SimpleModel(input_size=10, output_size=5)
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 在训练循环中使用优化器
for epoch in range(10):
    # ... 其他训练步骤 ...
    
    # 梯度清零
    optimizer.zero_grad()
    
    # 计算损失
    loss = compute_loss()
    
    # 反向传播
    loss.backward()
    
    # 参数更新
    optimizer.step()

5.4 学习率调度

介绍: torch.optim.lr_scheduler 模块提供了多种学习率调度器,例如学习率衰减等。

简单使用:

import torch
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR

# 创建模型、优化器和学习率调度器
model = SimpleModel(input_size=10, output_size=5)
optimizer = optim.SGD(model.parameters(), lr=0.01)
scheduler = StepLR(optimizer, step_size=5, gamma=0.1)

# 在训练循环中使用学习率调度器
for epoch in range(20):
    # ... 其他训练步骤 ...
    
    # 梯度清零
    optimizer.zero_grad()
    
    # 计算损失
    loss = compute_loss()
    
    # 反向传播
    loss.backward()
    
    # 参数更新
    optimizer.step()
    
    # 更新学习率
    scheduler.step()

5.5 模型保存与加载

介绍: torch.save()torch.load() 用于模型的保存和加载。

简单使用:

import torch

# 保存模型
torch.save(model.state_dict(), 'model.pth')

# 加载模型
loaded_model = SimpleModel(input_size=10, output_size=5)
loaded_model.load_state_dict(torch.load('model.pth'))

5.6 GPU 加速

介绍: PyTorch 允许在GPU上运行张量和模型,以加速深度学习任务。

简单使用:

import torch

# 检查是否有可用的GPU
if torch.cuda.is_available():
    # 将模型和张量移动到GPU
    model = model.cuda()
    tensor = tensor.cuda()

5.7 分布式训练

介绍: PyTorch 支持分布式训练,使得可以在多个GPU或多台机器上进行模型训练。

简单使用:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.multiprocessing as mp
import torch.distributed as dist

# 初始化分布式训练环境
mp.spawn(train, nprocs=4, args=(model, criterion, optimizer, train_loader))

5.8 数据并行与模型并行

介绍: 数据并行是将数据分布在多个GPU上进行处理,而模型并行是将模型的不同部分分布在多个GPU上。

简单使用:

import torch
import torch.nn as nn

# 数据并行
model = nn.DataParallel(model)

# 模型并行
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.part1 = nn.Linear(10, 5)
        self.part2 = nn.Linear(5, 1)

# 将模型的不同部分放在不同的GPU上
model_part1 = MyModel().part1.cuda(0)
model_part2 = MyModel().part2.cuda(1)

6.pytorch 高级框架和工具

6.1 图像处理与加载

介绍: torchvision.transforms 模块提供了许多用于图像处理和加载的转换操作,例如裁剪、旋转、缩放等。

简单使用:

import torch
from torchvision import transforms
from PIL import Image

# 定义图像转换
transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.RandomCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
])

# 加载图像并应用转换
image = Image.open('example.jpg')
transformed_image = transform(image)

6.2 图像加载

介绍: torchvision.datasets.ImageFolder 允许从文件夹中加载图像数据集。

简单使用:

import torch
from torchvision import datasets, transforms

# 定义图像转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
])

# 加载图像数据集
dataset = datasets.ImageFolder(root='path/to/data', transform=transform)

7.自定义操作

7.1 自定义损失函数

介绍: 你可以通过继承 torch.nn.Module 类来创建自定义的损失函数。

简单使用:

import torch
import torch.nn as nn

# 自定义损失函数类
class CustomLoss(nn.Module):
    def __init__(self, weight):
        super(CustomLoss, self).__init__()
        self.weight = weight

    def forward(self, predictions, targets):
        loss = torch.mean((predictions - targets) ** 2)
        weighted_loss = self.weight * loss
        return weighted_loss

# 使用自定义损失函数
loss_function = CustomLoss(weight=0.5)

7.2 自定义初始化方法

介绍: 你可以自定义模型参数的初始化方法。

简单使用:

import torch.nn.init as init

# 自定义初始化方法
def custom_init(m):
    if isinstance(m, nn.Linear):
        init.constant_(m.weight, val=0.1)
        init.constant_(m.bias, val=0)

# 在模型中应用初始化方法
model.apply(custom_init)

7.3 自定义学习率调度器

介绍: 你可以通过继承 torch.optim.lr_scheduler._LRScheduler 类来创建自定义学习率调度器。

简单使用:

import torch.optim as optim

# 自定义学习率调度器类
class CustomLRScheduler(optim.lr_scheduler._LRScheduler):
    def __init__(self, optimizer):
        super(CustomLRScheduler, self).__init__(optimizer)

    def get_lr(self):
        # 自定义学习率调度逻辑
        pass

# 使用自定义学习率调度器
optimizer = optim.SGD(model.parameters(), lr=0.01)
lr_scheduler = CustomLRScheduler(optimizer)

7.4 可视化工具

介绍: 使用可视化工具可以更好地理解模型的训练过程。

简单使用:

from torch.utils.tensorboard import SummaryWriter

# 创建 TensorBoard 写入器
writer = SummaryWriter()

# 写入标量值
writer.add_scalar('Loss', loss, global_step=epoch)

# 写入模型结构
writer.add_graph(model, input_data)

# 在命令行中运行 TensorBoard
# tensorboard --logdir=runs

7.5 自定义数据加载器

介绍: 继承 torch.utils.data.Dataset 类可以自定义数据加载器。

简单使用:

from torch.utils.data import Dataset

# 自定义数据加载器类
class CustomDataset(Dataset):
    def __init__(self, data, labels):
        self.data = data
        self.labels = labels

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        return self.data[index], self.labels[index]

# 使用自定义数据加载器
custom_dataset = CustomDataset(data, labels)

7.6 PyTorch 转 ONNX

介绍: 将 PyTorch 模型转换为 ONNX(Open Neural Network Exchange)格式,以在其他框架或硬件上部署模型。

简单使用:

import torch
import torchvision.models as models

# 加载预训练模型
model = models.resnet18(pretrained=True)

# 将 PyTorch 模型转为 ONNX 格式
dummy_input = torch.randn(1, 3, 224, 224)
onnx_path = "resnet18.onnx"
torch.onnx.export(model, dummy_input, onnx_path, verbose=True)

7.7 混合精度训练

介绍: 使用混合精度训练可以加速模型训练,减少显存占用。

简单使用:

import torch
from torch.cuda.amp import autocast, GradScaler

# 创建模型和优化器
model = ...
optimizer = ...

# 创建混合精度训练的梯度缩放器
scaler = GradScaler()

# 在训练循环中使用混合精度训练
for epoch in range(num_epochs):
    for input_data, target in train_loader:
        optimizer.zero_grad()
        
        # 使用 autocast 将前向传播、损失计算和反向传播放在混合精度环境中
        with autocast():
            output = model(input_data)
            loss = loss_fn(output, target)
        
        # 反向传播和梯度更新
        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()

7.8 PyTorch 中的异步数据加载

介绍: PyTorch 允许使用 torch.utils.data.DataLoadernum_workers 参数实现异步数据加载,加速数据加载过程。

简单使用:

import torch
from torch.utils.data import DataLoader

# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)

7.9 PyTorch 中的分布式训练与模型并行

介绍: PyTorch 支持分布式训练,可以在多个 GPU 或多台机器上进行模型训练。此外,PyTorch 也支持模型并行,允许将模型的不同部分分布在多个 GPU 上。

简单使用:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

# 初始化分布式训练环境
dist.init_process_group(backend='nccl', init_method='tcp://localhost:23456', rank=0, world_size=1)

# 创建模型并将其移到 GPU
model = nn.Sequential(nn.Linear(10, 5), nn.ReLU(), nn.Linear(5, 1))
model = model.to('cuda')

# 使用 DistributedDataParallel 包装模型
model = DistributedDataParallel(model)

# 定义优化器和损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.MSELoss()

# 在训练循环中使用 DistributedDataParallel
for epoch in range(num_epochs):
    for input_data, target in train_loader:
        input_data, target = input_data.to('cuda'), target.to('cuda')
        output = model(input_data)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

# 在命令行中使用多 GPU 训练:
# python -m torch.distributed.launch --nproc_per_node=NUM_GPUS your_training_script.py

7.10 PyTorch 中的自动微分(Autograd)

介绍: PyTorch 中的 Autograd 模块提供了自动微分的功能,可以方便地计算梯度。

简单使用:

import torch

# 创建一个需要梯度的张量
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)

# 定义一个计算图
y = x.pow(2).sum()

# 反向传播,计算梯度
y.backward()

# 获取梯度
print(x.grad)

7.11 PyTorch 中的动态计算图

介绍: PyTorch 中的计算图是动态的,允许根据实际执行情况动态构建计算图。

简单使用:

import torch

# 创建动态计算图
def dynamic_computation(x):
    if x.sum() > 0:
        return x * 2
    else:
        return x * 3

# 构建计算图
x = torch.tensor([1.0, -1.0], requires_grad=True)
result = dynamic_computation(x)

# 反向传播,计算梯度
result.sum().backward()

# 获取梯度
print(x.grad)

7.12 PyTorch 中的模型保存与加载

介绍: PyTorch 提供了保存和加载模型的工具,可以保存整个模型或仅保存模型的参数。

简单使用:

import torch

# 定义一个简单的模型
class SimpleModel(torch.nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = torch.nn.Linear(10, 5)

    def forward(self, x):
        return self.fc(x)

# 创建模型实例
model = SimpleModel()

# 保存整个模型
torch.save(model, 'whole_model.pth')

# 保存模型参数
torch.save(model.state_dict(), 'model_params.pth')

# 加载整个模型
loaded_model = torch.load('whole_model.pth')

# 加载模型参数到新的模型实例
new_model = SimpleModel()
new_model.load_state_dict(torch.load('model_params.pth'))
import torch
import torch.nn as nn

# 创建模型和损失函数
model = ...
criterion = ...

# 创建数据加载器
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)

# 模型评估
model.eval()
total_loss = 0.0
correct_predictions = 0

with torch.no_grad():
    for inputs, labels in test_loader:
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        total_loss += loss.item()
        
        _, predicted_class = torch.max(outputs, 1)
        correct_predictions += (predicted_class == labels).sum().item()

average_loss = total_loss / len(test_loader.dataset)
accuracy = correct_predictions / len(test_loader.dataset)

print(f'Average Loss: {average_loss}, Accuracy: {accuracy}')

参考文章

50个超强pytorch操作!!

【创作不易,望点赞收藏,若有疑问,请留言,谢谢】

标签:tensor,nn,流程,torch,张量,pytorch,深度,import,model
From: https://www.cnblogs.com/dongxuelove/p/17966365

相关文章

  • 深度学习基础知识整理
    自动编码器Auto-encoders是一种人工神经网络,用于学习未标记数据的有效编码。它由两个部分组成:编码器和解码器。编码器将输入数据转换为一种更紧凑的表示形式,而解码器则将该表示形式转换回原始数据。这种方法可以用于降维,去噪,特征提取和生成模型。自编码器的训练过程是无监督的,因......
  • 3C认证项目认证申请资料 CCC认证流程
    3C认证项目认证申请资料:1、强制性产品认证申请书。2、申请人的《企业法人营业执照》或登记注册证明复印件(初次申请或变更时提供);3、生产厂的组织结构图(初次申请或变更时提供);4、申请认证产品工艺流程图(初次申请或变更时提供);5、例行检验用关键仪器设备(见认证实施规则工厂质量控制检......
  • 蓝牙音响CEC认证办理流程
    一、CEC认证是什么?CEC认证怎么申请,流程是什么?符合了CEC认证的要求,产品才能在美国加利福尼亚州销售与流通,不然产品是无法在美国加利福尼亚州正常流通与销售的。CEC认证是美国加利福尼亚州能效认证,蓝牙音响做为一款需要依靠内置锂电池来供电的电子产品,它在CEC认证标准中属于smallbatt......
  • MySQL中SQL语句的执行流程
    比如有一条SQL语句select*fromtableswherename='zhangsan';那么这条语句通过MySQL查询,执行流程是怎么样的?直接看图:1.客户端跟服务端建立连接,权限校验2.检查是否开启缓存QueryCache,并且是否命中缓存,如果命中,直接将数据返回给客户端;没有命中则向后继续执行3.检查SQ......
  • ICLR 2022: Anomaly Transformer论文阅读笔记(2) 深度解析代码
    AnomalyTransformer是一个由Transformer:AttentionIsAllYouNeed启发出的检测时间序列异常点的无监督学习算法。在这一篇我会深度解析论文算法以及代码的一一对应,让人更方便能读懂和使用源代码。阅读笔记前篇:ICLR2022:AnomalyTransformer论文阅读笔记+代码复现阅读前提......
  • 深度解析OCR技术的原理与应用
    随着数字化时代的来临,大量的文档和数据被存储在电子格式中。这些数据大部分是图片或者PDF格式,无法直接进行文本搜索或编辑。为了解决这个问题,光学字符识别(OCR)技术应运而生。OCR技术能够将图片或PDF中的文字转换成可编辑和搜索的文本格式,大大提高了数据处理的效率和准确性。一、OCR......
  • 预训练对话大模型深度解读
    预训练对话大模型是近年来自然语言处理领域备受关注的技术,它在对话生成、对话理解等任务中发挥了重要作用。本文将深入探讨预训练对话大模型的背景、应用和挑战,为读者提供对这一技术的全面理解。一、预训练对话大模型简介预训练对话大模型是指通过对大量语料库进行预训练,学习到语言......
  • C++U5-第01课-深度优先搜索1
    在全排列问题中,使用深度优先搜索(DFS)的思想体现在以下几个方面:递归结构:在解决全排列问题的函数中,我们使用了递归调用的方式。通过递归地处理每个位置上的数字,然后继续递归地处理下一个位置上的数字,最终得到完整的排列结果。选择与回溯:在每次递归调用中,我们需要做出选择并标记......
  • 深度学习入门
    本文内容提炼于《Python深度学习》一书,整合了前4章的内容。人工智能包含机器学习,而深度学习是机器学习的一个分支。机器学习只能用来记忆训练数据中存在的模式。只能识别出曾经见过的东西。在过去的数据上训练机器学习来预测未来,这里存在一个假设,就是未来的规律与过去......
  • PyTorch中的nn.LeakyReLU()、nn.Module和nn.ModuleList
    一.nn.LeakyReLU()函数  在PyTorch中,nn.LeakyReLU()是一个激活函数,用于引入非线性性到神经网络中。LeakyReLU是修正线性单元(ReLU)的一种变体,它在输入为负数时不是完全置零,而是引入一个小的负斜率。nn.LeakyReLU()的初始化参数如下:negative_slope(默认为0.01):负斜率,指定当......