首页 > 其他分享 >【深度学习】从0到完整项目第1篇:深度学习第一个案例(代码文档已分享)

【深度学习】从0到完整项目第1篇:深度学习第一个案例(代码文档已分享)

时间:2024-01-05 21:36:19浏览次数:25  
标签:模型 深度 学习 文档 tensorflow 数据流 TensorFlow

本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN),商品物体检测项目介绍,YOLO与SSD,商品检测数据集训练和模型导出与部署。

全套笔记和代码自取地址: https://gitee.com/yinuo112/Technology/tree/master/深度学习/深度学习笔记/1.md

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


共 9 章,60 子模块,总字数:130763


深度学习本文

要求

  • 熟练掌握机器学习基础,如分类、回归
  • 熟练掌握numpy,pandas,sklearn等框架使用

目标

  • 算法

    • 掌握神经网络的数学原理

    • 手动实现简单的神经网络结构

  • 应用

    • 熟练掌握TensorFlow框架使用
    • 掌握神经网络图像相关案例

深度学习介绍

1.1 深度学习与机器学习的区别

学习目标

  • 目标

    • 知道深度学习与机器学习的区别
  • 应用

1.1.1 区别

区别

1.1.1.1 特征提取方面

  • 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识
  • 深度学习通常由多个层组成,它们通常将更简单的模型组合在一起,通过将数据从一层传递到另一层来构建更复杂的模型。通过大量数据的训练自动得到模型,不需要人工设计特征提取环节

深度学习算法试图从数据中学习高级功能,这是深度学习的一个非常独特的部分。因此,减少了为每个问题开发新特征提取器的任务。适合用在难提取特征的图像、语音、自然语言领域

1.1.1.2 数据量

机器学习需要的执行时间远少于深度学习,深度学习参数往往很庞大,需要通过大量数据的多次优化来训练参数。

数据量

第一、它们需要大量的训练数据集

第二、是训练深度神经网络需要大量的算力

可能要花费数天、甚至数周的时间,才能使用数百万张图像的数据集训练出一个深度网络。所以以后

  • 需要强大对的GPU服务器来进行计算
  • 全面管理的分布式训练与预测服务——比如谷歌 TensorFlow 云机器学习平台——可能会解决这些问题,为大家提供成本合理的基于云的 CPU 和 GPU

1.1.2 算法代表

  • 机器学习

    • 朴素贝叶斯、决策树等
  • 深度学习

    • 神经网络

深度学习的应用场景

学习目标

  • 目标

    • 知道深度学习的主要应用场景
  • 应用

  • 图像识别

    • 物体识别
    • 场景识别
    • 车型识别
    • 人脸检测跟踪
    • 人脸关键点定位
    • 人脸身份认证
  • 自然语言处理技术

    • 机器翻译
    • 文本识别
    • 聊天对话
  • 语音技术

    • 语音识别

1.2 深度学习框架介绍

学习目标

  • 目标

    • 了解常见的深度学习框架
    • 了解TensorFlow框架
  • 应用

1.2.1 常见深度学习框架对比

框架关注

tensorflow的github:

1.2.2 TensorFlow的特点

tensorflow

官网:https://www.tensorflow.org/

  • 语言多样(Language Options)

    • TensorFlow使用C++实现的,然后用Python封装。谷歌号召社区通过SWIG开发更多的语言接口来支持TensorFlow
  • 使用分发策略进行分发训练

    • 对于大型 ML 训练任务,分发策略 API使在不更改模型定义的情况下,可以轻松地在不同的硬件配置上分发和训练模型。由于 TensorFlow 支持一系列硬件加速器,如 CPU、GPU 和 TPU
  • Tensorboard可视化

    • TensorBoard是TensorFlow的一组Web应用,用来监控TensorFlow运行过程
  • 在任何平台上的生产中进行强大的模型部署

一旦您训练并保存了模型,就可以直接在应用程序中执行它,或者使用部署库为其提供服务:

  • TensorFlow 服务:允许模型通过 HTTP/REST 或 GRPC/协议缓冲区提供服务的 TensorFlow 库构建。
  • TensorFlow Lite:TensorFlow 针对移动和嵌入式设备的轻量级解决方案提供了在 Android、iOS 和嵌入式系统上部署模型的能力。
  • tensorflow.js:支持在 JavaScript 环境中部署模型,例如在 Web 浏览器或服务器端通过 Node.js 部署模型。TensorFlow.js 还支持在 JavaScript 中定义模型,并使用类似于 Kera 的 API 直接在 Web 浏览器中进行训练。

1.2.3 TensorFlow的安装

安装 TensorFlow在64 位系统上测试这些系统支持 TensorFlow:

  • Ubuntu 16.04 或更高版本
  • Windows 7 或更高版本
  • macOS 10.12.6 (Sierra) 或更高版本(不支持 GPU)

进入虚拟环境当中再安装。刚开始的环境比较简单,只要下载tensorflow即可

  • 环境包:

安装较慢,指定镜像源,请在带有numpy等库的虚拟环境中安装

  • ubuntu安装
pip install tensorflow==1.12 -i https://mirrors.aliyun.com/pypi/simple
  • MacOS安装
pip install tensorflow==1.12 -i https://mirrors.aliyun.com/pypi/simple

注:如果需要下载GPU版本的(TensorFlow只提供windows和linux版本的,没有Macos版本的)参考官网https://www.tensorflow.org/install/gpu?hl=zh-cn,

1、虚拟机下linux也是用不了GPU版本TensorFlow

2、本机单独的windows和本机单独的unbuntu可以使用GPU版本TensorFlow,需要安装相关驱动

1.2.4 Tenssorlfow使用技巧

  • 使用**tf.keras**构建、训练和验证您的模型,tf相关API用于损失计算修改等
  • tensorflow提供模型训练模型部署

TensorFlow介绍

说明TensorFlow的数据流图结构
应用TensorFlow操作图
说明会话在TensorFlow程序中的作用
应用TensorFlow实现张量的创建、形状类型修改操作
应用Variable实现变量op的创建
应用Tensorboard实现图结构以及张量值的显示
应用tf.train.saver实现TensorFlow的模型保存以及加载
应用tf.app.flags实现命令行参数添加和使用
应用TensorFlow实现线性回归

2.1 TF数据流图

学习目标

  • 目标

    • 说明TensorFlow的数据流图结构
  • 应用

  • 内容预览

    • 2.1.1 案例:TensorFlow实现一个加法运算

      • 1 代码
      • 2 TensorFlow结构分析
    • 2.1.2 数据流图介绍

2.1.1 案例:TensorFlow实现一个加法运算

2.1.1.1 代码

def tensorflow_demo():
    """
    通过简单案例来了解tensorflow的基础结构
    :return: None
    """
    # 一、原生python实现加法运算
    a = 10
    b = 20
    c = a + b
    print("原生Python实现加法运算方法1:\n", c)
    def add(a, b):
        return a + b
    sum = add(a, b)
    print("原生python实现加法运算方法2:\n", sum)

    # 二、tensorflow实现加法运算
    a_t = tf.constant(10)
    b_t = tf.constant(20)
    # 不提倡直接运用这种符号运算符进行计算
    # 更常用tensorflow提供的函数进行计算
    # c_t = a_t + b_t
    c_t = tf.add(a_t, b_t)
    print("tensorflow实现加法运算:\n", c_t)
    # 如何让计算结果出现?
    # 开启会话
    with tf.Session() as sess:
        sum_t = sess.run(c_t)
        print("在sess当中的sum_t:\n", sum_t)

    return None

注意问题:警告指出你的CPU支持AVX运算加速了线性代数计算,即点积,矩阵乘法,卷积等。可以从源代码安装TensorFlow来编译,当然也可以选择关闭

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

2.1.1.2 TensorFlow结构分析

TensorFlow 程序通常被组织成一个构建图阶段和一个执行图阶段。

在构建阶段,数据与操作的执行步骤被描述成一个图。

在执行阶段,使用会话执行构建好的图中的操作。

  • 图和会话 :

    • 图:这是 TensorFlow 将计算表示为指令之间的依赖关系的一种表示法
    • 会话:TensorFlow 跨一个或多个本地或远程设备运行数据流图的机制
  • 张量:TensorFlow 中的基本数据对象

  • 节点:提供图当中执行的操作

2.1.2 数据流图介绍

<figure class="half"> </figure> TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源框架。

节点(Operation)在图中表示数学操作,线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。

未完待续, 同学们请等待下一期

全套笔记和代码自取地址: 请移步这里

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

或多个本地或远程设备运行数据流图的机制

  • 张量:TensorFlow 中的基本数据对象
  • 节点:提供图当中执行的操作

2.1.2 数据流图介绍

<figure class="half">[外链图片转存中...(img-Sr9nrBVw-1704455564725)] [外链图片转存中...(img-mMUkBM4w-1704455564726)]</figure> TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源框架。

节点(Operation)在图中表示数学操作,线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。

未完待续, 同学们请等待下一期

全套笔记和代码自取地址: 请移步这里

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

标签:模型,深度,学习,文档,tensorflow,数据流,TensorFlow
From: https://blog.51cto.com/u_13578013/9117764

相关文章

  • 2023-2024-1 20231307 《计算机基础与程序设计》第七周学习总结
    作业信息这个作业属于哪个课程2023-2024-1-计算机基础与程序设计这个作业要求在哪里2023-2024-1计算机基础与程序设计第七周作业这个作业的目标数组与链表、基于数组和基于链表实现数据结构、无序表与有序表、树、图、子程序与参数作业正文https://www.cnblogs.c......
  • C语言学习随笔-05 变量
    变量:其值在其作用域内可以改变的量交变量,变量在使用前必须定义,每一个变量都有地址。1、变量的命名    ● 变量名由大小写字母、数字和下划线组成,必须以大小写字母或下划线开头,不能以数字开头。    ● C中也允许定义各种其它类型的变量,如枚举、指针、数组、结构体......
  • 【THM】Burp Suite:Extensions(Burp Suite扩展·更新版)-学习
    本文相关的TryHackMe实验房间链接:https://tryhackme.com/room/burpsuiteextensions本文相关内容:了解如何使用Extensions模块来扩展BurpSuite的功能。简介在本文中,我们将学习BurpSuite的Extensions(扩展)功能模块,该功能允许开发人员为Burp框架创建附加模块。虽然在本文中并......
  • 【Python&RS】栅格数据/图片位深度(bit)转换
    ​    关于栅格数据/图片的位深度(eg.8bit、16bit、32bit)转换之前我就发过一篇文章,【Python&RS】基于GDAL栅格数据/图片位深度(bit)转换。但是最近在使用的时候发现好像效果不行,有时候转换不成功,所以自己又研究了一下原理重新写了一份代码。今天就和大家分享一下如何使用Py......
  • C语言学习随笔-04 数据类型
    C中的数据类型:在C语言中,数据类型指的是用于声明不同类型的变量或函数的一个广泛的系统。变量的类型决定了变量存储占用的空间,以及如何解释存储的位模式。常用的四中基本数据类型:int、char、float、double    ▶基本类型:它们是算术类型,如int、char、float、double。 ......
  • 学习python自动化——re正则
    re(正则)一、正则表达式作用正则表达式匹配指定规则的字符串二、re常用方法findall(pattern,string,flags=0):使用正则表达式,匹配所有符合条件的字符串,返回匹配到的所有子串,返回listpattern:正则表达式string:匹配的字符串flags=0:自定义的一些规则,比如不......
  • Android期末作业课程设计-爱篮球论坛+源代码+文档说明
    项目介绍界面预览项目备注1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作......
  • notepad 记事本 - 大三下安卓课程设计+源代码+文档说明
    项目介绍基本功能:1.添加时间戳2.搜索功能附加功能:1.UI美化:设置背景颜色、设置字体颜色及大小2.导出笔记3.设置闹钟提醒4.分享笔记以下是实现功能的核心代码及解释:界面预览项目备注1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!2、本项目适合计算机相......
  • Android期末大作业-Note便签本应用+源代码+文档说明
    项目介绍界面预览项目备注1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作......
  • Android大作业,云备忘录项目+源代码+文档说明
    界面预览项目备注1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目......