首页 > 其他分享 >Predict potential miRNA-disease associations based on bounded nuclear norm regularization

Predict potential miRNA-disease associations based on bounded nuclear norm regularization

时间:2023-12-30 14:11:45浏览次数:21  
标签:associations regularization based nuclear disease miRNA norm

Predict potential miRNA-disease associations based on bounded nuclear norm regularization    

2023/12/8 16:00:57

Predicting potential miRNA-disease associations is a challenging task in bioinformatics and computational biology. One approach that has been proposed for this task is the use of bounded nuclear norm regularization.

Bounded nuclear norm regularization is a method used to estimate the association between miRNAs and diseases by integrating multiple types of data, such as miRNA expression profiles, disease similarity measures, and known miRNA-disease associations. The key idea behind this method is to model the association matrix as a low-rank matrix, where the rows represent miRNAs, the columns represent diseases, and the entries represent the strength of the association.

The bounded nuclear norm regularization aims to factorize the association matrix into two low-rank matrices, one representing miRNA similarities and the other representing disease similarities. By incorporating the bounded nuclear norm regularization term, which enforces the low-rank property, the method can effectively capture the underlying associations between miRNAs and diseases.

To predict potential miRNA-disease associations using this method, the association matrix is factorized, and the missing entries are estimated based on the low-rank approximation. The predicted values can then be used to identify potential miRNA-disease associations.

It's worth noting that while bounded nuclear norm regularization has shown promising results in predicting miRNA-disease associations, it's just one of many approaches in this field. There are several other methods and algorithms available that utilize different strategies and data sources for prediction. Researchers continue to explore and develop new techniques to improve the accuracy and reliability of miRNA-disease association predictions.

   

标签:associations,regularization,based,nuclear,disease,miRNA,norm
From: https://www.cnblogs.com/wangprince2017/p/17936313.html

相关文章

  • A Long read hybrid error correction algorithm based on segmented pHMM
    ALongreadhybriderrorcorrectionalgorithmbasedonsegmentedpHMM  2023/12/1511:06:36The"LongreadhybriderrorcorrectionalgorithmbasedonsegmentedpHMM"referstoaspecificapproachforerrorcorrectioninlong-readse......
  • Hash-based Message Authentication Code(HMAC)
    一、引言在现代信息安全领域,消息认证码(MessageAuthenticationCode,简称MAC)起着至关重要的作用。Hash-basedMessageAuthenticationCode(基于哈希的MAC,简称HMAC)作为一种广泛应用的MAC算法,其性能和安全性得到了业界的认可。本文将从算法原理、优缺点、替代方案等方面,全面介......
  • PBKDF2(Password-Based Key Derivation Function 2)算法
    一、引言在当今数字时代,保护用户数据和隐私的安全变得越来越重要。为实现这一目标,加密和密钥管理技术发挥着关键作用。PBKDF2(Password-BasedKeyDerivationFunction2)算法作为一种基于密码的密钥生成方法,广泛应用于各种安全场景。本文将从各个方面介绍和解释PBKDF2算法,剖......
  • 神经网络优化篇:详解其他正则化方法(Other regularization methods)
    其他正则化方法除了\(L2\)正则化和随机失活(dropout)正则化,还有几种方法可以减少神经网络中的过拟合:一.数据扩增假设正在拟合猫咪图片分类器,如果想通过扩增训练数据来解决过拟合,但扩增数据代价高,而且有时候无法扩增数据,但可以通过添加这类图片来增加训练集。例如,水平翻转图片,并......
  • LocPatcH An efficient long-read hybrid error correction algorithm based on local
    该文档主要介绍了一种基于装配的方法和概率隐藏马尔科夫模型(pHMM)用于纠正长读序列的错误。文档详细描述了对酵母数据进行实验的结果、纠正方法的拓扑结构以及实验设置和数据集。 这种基于装配的纠正方法相对于直接纠正存在哪些优势?pHMM的拓扑结构是怎样的?......
  • An integrated method for predicting binding sites of protein-RNA interactions ba
    会议地点:腾讯会议关键词:数据平衡;蛋白质-RNA相互作用作者:TongZhou,JieRong,YangLiu,WeikangGong,ChunhuaLi期刊:Bioinformatics年份:2022论文原文:https://academic.oup.com/bioinformatics/article-abstract/38/9/2452/6543608补充材料:主要内容问题:识别蛋白质-RNA相互作用......
  • 如果你希望打包的Python脚本在运行时不显示命令行窗口,你可以在使用`auto-py-to-exe`进
    auto-py-to-exe是一个基于Eel和PyInstaller构建的工具,可以通过简单的UI界面将Python项目中的.py文件打包为.exe文件¹。以下是使用auto-py-to-exe的步骤:环境要求:Python环境需要大于或等于2.7¹。模块安装:在命令行中输入以下命令来安装auto-py-to-exe¹:pipinstallauto-py-to-exe或......
  • 【WPF】 BasedOn的用法
    BasedOn用于样式的继承。这里的已经继承了一个样式  此时,我们想在Resource中让他附加新的样式,但是这样不成功  修改如下:去掉了之前的样式选择  我们使用BasedOn让其叠加样式 ......
  • ERROR: Could not build wheels for opencv-python, which is required to install py
    目录系统环境问题描述问题解决问题二参考文章系统环境#macOS系统版本$sw_versProductName:MacOSXProductVersion:10.14.4BuildVersion:18E2035#Python版本$python--versionPython3.9.13问题描述安装opencv-python报错,安装失败#安装opencv-python的命令......
  • 神经网络优化篇:详解dropout 正则化(Dropout Regularization)
    dropout正则化除了\(L2\)正则化,还有一个非常实用的正则化方法——“Dropout(随机失活)”。假设在训练上图这样的神经网络,它存在过拟合,这就是dropout所要处理的,复制这个神经网络,dropout会遍历网络的每一层,并设置消除神经网络中节点的概率。假设网络中的每一层,每个节点都以抛硬币......