首页 > 其他分享 >图像数据格式转换

图像数据格式转换

时间:2023-12-25 15:03:37浏览次数:36  
标签:转换 HalconCpp int image HTuple uchar 图像 数据格式 QImage

TESTHALCON.h

#pragma once
#include <QtWidgets/QWidget>
#include <QImage>
#include <QObject>
#include "..\TEST-HALCON\halcon12\x64\include\halconcpp\HalconCpp.h"
  using namespace HalconCpp;
  /****************************OPOENCV2.4.9******************************/
  #include "..\TEST-HALCON\opencvlib249\x64\include\opencv2\opencv.hpp"
  using namespace cv;
  /***************************************/
  class TESTHALCON : public QWidget
  {
      Q_OBJECT
  public:
      TESTHALCON(QWidget *parent = Q_NULLPTR);
  	static TESTHALCON* GetInstance();
  private:
  	bool TESTHALCON::MatToQImage(cv::Mat& mat, QImage &_image);
  	bool QImageToMat(const QImage &srcImage, cv::Mat *dstImage);
  	bool HObject2Mat(HalconCpp::HObject & srcImage, cv::Mat * dstImage);
  	//Halcon中的HObject类型转QImage类型
  	bool HObject2QImage(const HalconCpp::HObject *src, QImage &dst/*, QVector<uint> g_Color_table*/);
  	bool CvMat2HObject(cv::Mat & src, HalconCpp::HObject * HObj);
  	bool QImage2Mat(QImage image, cv::Mat &mat);
  	//QImage类型转Halcon中的HObject类型
  	int QImageToHOjbect(QImage &image, HObject *Object);
  	//Halcon中的HObject类型转OpenCV中的cv::Mat类型
  	static bool HObject2Mat(const HalconCpp::HObject &Hobj, cv::Mat &Image);
  	HObject QImageToHObject(QImage image); //QImage彩色转Halcon彩色
  	bool HObject2QImage(const HalconCpp::HObject &Hobj, QImage &Image);
  	void HObjectToQImage(HObject himage, QImage **qimage);

  	void loadConfig(QString path);
  	void drawPoint(QStringList path);
  protected:
  	static TESTHALCON*  m_pInstance;
  private:
      Ui::TESTHALCONClass ui;
  };

TESTHALCON.cpp

#include "TESTHALCON.h"
#include <vector>
#include <qDebug>

#include "..\TEST-HALCON\halcon12\x64\include\halconcpp\HalconCpp.h"
using namespace HalconCpp;
/****************************OPOENCV2.4.9***************************************/
#include "..\TEST-HALCON\opencvlib249\x64\include\opencv2\opencv.hpp"
using namespace cv;
/*******************************************************************************/

构造函数

TESTHALCON::TESTHALCON(QWidget *parent)
    : QWidget(parent)
{
    ui.setupUi(this);
	/*HObject himg;
	cv::Mat cvimg;
	QImage qimg;
	//qimg.load("D:\\3333.bmp");
	//qimg.load("D:\\33.tiff");
	//ReadImage(&himg, "D:\\33.tiff");
	///*bool bflag*/cvimg = QImage2Mat(qimg/*, &cvimg*/);
	//cv::imwrite("D:\\write_HObj_cv_6.bmp", cvimg);
	//cv::imwrite("D:\\write_HObj_cv_6.tiff", cvimg);
	//QImageToHOjbect(qimg,&himg);
	//WriteImage(himg, "tiff", 0, "D:\\++++.tiff");
	//HObject2Mat(himg, cvimg);
	//cv::imwrite("D:\\write_HObj_cv_6.tiff", cvimg);
	//HObject2QImage(&himg,qimg);
	//HObject2QImage(himg, qimg);
	//qimg.save("D:\\------.tiff");
	//QImage2HImage(qimg, himg);

	loadConfig(qApp->applicationDirPath() + "/DevConfig/xxx.txt");
}
TESTHALCON* TESTHALCON::m_pInstance = nullptr;
TESTHALCON* TESTHALCON::GetInstance()
{
	if (m_pInstance == nullptr)
	{
		m_pInstance = new TESTHALCON;
	}
	return m_pInstance;
}

//Mat转为QImage图像对象;

bool TESTHALCON::MatToQImage(cv::Mat& mat, QImage &_image)
{
	if (mat.type() == CV_8UC1)
	{
		QImage image(mat.cols, mat.rows, QImage::Format_Indexed8);
		// Set the color table (used to translate colour indexes to qRgb values)
		image.setColorCount(256);
		for (int i = 0; i < 256; i++)
		{
			image.setColor(i, qRgb(i, i, i));
		}
		// Copy input Mat
		uchar* pSrc = mat.data;
		for (int row = 0; row < mat.rows; row++)
		{
			uchar* pDest = image.scanLine(row);
			memcpy(pDest, pSrc, mat.cols);
			pSrc += mat.step;
		}
		_image = image;
		return true;
	}
	// 8-bits unsigned, NO. OF CHANNELS = 3
	else if (mat.type() == CV_8UC3)
	{
		// Copy input Mat
		const uchar* pSrc = (const uchar*)mat.data;
		// Create QImage with same dimensions as input Mat
		QImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);
		_image = image.rgbSwapped();
		return true;
	}
	else if (mat.type() == CV_8UC4)
	{
		// Copy input Mat
		const uchar* pSrc = (const uchar*)mat.data;
		// Create QImage with same dimensions as input Mat
		QImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_ARGB32);
		_image = image.copy();
		 return true;
	}
	else
	{
		_image = QImage();
		return false;
	}
}

// Hobject转为Mat图像对象; src: Mat图像对象;[Return]QImage图像对象;---

bool TESTHALCON::HObject2Mat(HalconCpp::HObject & srcImage, cv::Mat * dstImage)
{
	if ( !dstImage) return false;

	int mType = CV_8UC1;

	HTuple lChannels = 0;
	CountChannels(srcImage, &lChannels);
	Hlong strlChannels = lChannels;
	if (strlChannels != 1 && strlChannels != 3) return false;

	// 图像类型获取
	HTuple lWid = 0, lHei = 0;
	GetImageSize(srcImage, &lWid, &lHei);
	HTuple cType[16] = { 0 };
	GetImageType(srcImage, cType);
	int szBytesChn = 0;
	QString strvalue = cType[0].S();

	if (strvalue == QString("byte")) {
		mType = (strlChannels == 1) ? CV_8UC1 : CV_8UC3;
		szBytesChn = lWid*lHei;
	}
	else if (strvalue == QString("uint2") && 1 == strlChannels) {
		mType = CV_16UC1;
		szBytesChn = lWid*lHei * 2;
	}
	else { return false; }

	// 构造新的Mat对象
	if (dstImage->cols != lWid || dstImage->rows != lHei || dstImage->type() != mType) {
		dstImage->release();
		dstImage->create(lWid, lHei, mType);
	}

	// 复制图像数据
	if (1 == strlChannels) {
		char* ptr = nullptr;
		GetImagePointer1(srcImage, (HTuple*)&ptr, cType, (HTuple*)&lWid, (HTuple*)&lHei);
		if (ptr) {
			memcpy_s(dstImage->data, szBytesChn, ptr, szBytesChn);
		}
	}
	else if (3 == strlChannels && cType->ToString() == QString("byte")) {
		char *ptrGreen = nullptr, *ptrRed = nullptr, *ptrBlue = nullptr;
		GetImagePointer3(srcImage, (HTuple*)&ptrRed, (HTuple*)&ptrGreen, (HTuple*)&ptrBlue, cType, (HTuple*)&lWid, (HTuple*)&lHei);
		if (ptrBlue && ptrGreen && ptrRed) {
			std::vector<cv::Mat> vecM(3);
			vecM[0].create(lWid, lHei, CV_8UC1);
			vecM[1].create(lWid, lHei, CV_8UC1);
			vecM[2].create(lWid, lHei, CV_8UC1);
			memcpy_s(vecM[2].data, szBytesChn, ptrRed, szBytesChn);
			memcpy_s(vecM[1].data, szBytesChn, ptrGreen, szBytesChn);
			memcpy_s(vecM[0].data, szBytesChn, ptrBlue, szBytesChn);
			cv::merge(vecM, *dstImage);
		}
	}
	else { return false; }

	return true;
}

//Halcon中的HObject类型转QImage类型

bool TESTHALCON::HObject2QImage(const HalconCpp::HObject *src, QImage &dst/*, QVector<uint> g_Color_table*/)
{
	if (!src)  return false;
	HTuple imgType[32] = { 0 };
	GetImageType(*src, imgType);
	HObject dumpImg;
	GenEmptyObj(&dumpImg);
	QString strvalue = imgType[0].S();
	if (strvalue ==QString("byte")) {
		ScaleImageMax(*src, &dumpImg);
	}
	else {
		CopyImage(*src, &dumpImg);
	}
	
	QImage qimDst;
	HTuple strlCh = 0, strlWidth = 0, strlHeight = 0;
	Hlong lCh = 0, lWidth = 0, lHeight = 0;
	CountChannels(*src, &strlCh);
	
	lCh = strlCh;
	if (1 == lCh)
	{
		HTuple dataPtr ;
		GetImagePointer1(dumpImg, &dataPtr, imgType, &strlWidth, &strlHeight);
		
		lWidth = strlWidth;
		lHeight = strlHeight;
		if (!dataPtr || lWidth < 1 || lHeight < 1)  return false;

		QVector<uint> g_Color_table;
		for (int i = 0; i < 256; i++) {
			g_Color_table << qRgb(i, i, i);
		}
		if (strvalue == QString("byte"))
		{
			qimDst = QImage((uchar*)&dataPtr, lWidth, lHeight, lWidth, QImage::Format_Indexed8);
			qimDst.setColorTable(g_Color_table);
		}
		else {
			qimDst = QImage((uchar*)&dataPtr, lWidth, lHeight, lWidth, QImage::Format_Grayscale16);
			qimDst.setColorTable(g_Color_table);
		}
		dst = qimDst.copy();
	}
	else if (3 == lCh)
	{
		uchar *greenPtr = nullptr, *redPtr = nullptr, *bluePtr = nullptr;
		GetImagePointer3(dumpImg, (HTuple *)&redPtr, (HTuple *)&greenPtr, (HTuple *)&bluePtr, imgType, &strlWidth, &strlHeight);
		lWidth = strlWidth;
		lHeight = strlHeight;
		if (!redPtr || !greenPtr || !bluePtr || lWidth < 1 && lHeight < 1)  return false;

		int nAlignWidth = ((lWidth * lCh + 3) / 4) * 4;
		int szAlign = int(lWidth*lHeight*lCh * sizeof(uchar));
		uchar *alignBuf = new uchar[szAlign];
		memset(alignBuf, 0, szAlign);
		for (int h = 0; h < lHeight; h++)
		{
			for (int w = 0; w < lWidth; w++)
			{
				*(alignBuf + h*lWidth*lCh + w*lCh + 0) = *(redPtr + w + h*lWidth);
				*(alignBuf + h*lWidth*lCh + w*lCh + 1) = *(greenPtr + w + h*lWidth);
				*(alignBuf + h*lWidth*lCh + w*lCh + 2) = *(bluePtr + w + h*lWidth);
			}
		}
		qimDst = QImage(alignBuf, lWidth, lHeight, lWidth*lCh, QImage::Format_RGB888);
		dst = qimDst.copy();
		delete[] alignBuf;
		alignBuf = nullptr;
	}
	else { return false; }
	return true;
}

//Mat转为HObject图像对象并重新申请内存;成功 - true,失败 - false;

bool TESTHALCON::CvMat2HObject(cv::Mat & src, HalconCpp::HObject * HObj)
{
	if (!src.data || src.empty() || !HObj) return false;

	HObject tmpImg;
	GenEmptyObj(&tmpImg);
	int format = src.type();
	switch (format)
	{
	case CV_8UC1:
		GenImage1(&tmpImg, "byte", src.cols, src.rows, (Hlong)src.data);
		break;
	case CV_8UC3:
	{
		std::vector<cv::Mat> rgbChn_v(3);
		cv::split(src, rgbChn_v);
		GenImage3(&tmpImg, "byte", src.cols, src.rows, (Hlong)rgbChn_v.at(2).data, (Hlong)rgbChn_v.at(1).data, (Hlong)rgbChn_v.at(0).data);
	}
	break;
	case CV_16U:
		GenImage1(&tmpImg, "uint2", src.cols, src.rows, (Hlong)src.data);
		break;
	default:
		return false;
	}
	CopyImage(tmpImg, HObj);
	return true;
}

//QImage格式转化Mat类型-ok

//Qt读入彩色图后一般为Format_RGB32格式(4通道),而OpenCV一般用3通道的,因此进行了转换。
bool TESTHALCON::QImage2Mat(QImage image, cv::Mat &mat)
{
	qDebug() << image.format();
	switch (image.format())
	{
	case QImage::Format_RGB32:  //一般Qt读入彩色图后为此格式
		mat = cv::Mat(image.height(), image.width(), CV_8UC4, (void*)image.constBits(), image.bytesPerLine());
		cv::cvtColor(mat, mat, cv::COLOR_BGRA2BGR);   //转3通道
		break;
	case QImage::Format_RGB888:
		mat = cv::Mat(image.height(), image.width(), CV_8UC3, (void*)image.constBits(), image.bytesPerLine());
		cv::cvtColor(mat, mat, cv::COLOR_RGB2BGR);
		break;
	case QImage::Format_Indexed8:
		mat = cv::Mat(image.height(), image.width(), CV_8UC1, (void*)image.constBits(), image.bytesPerLine());
		break;
	case QImage::Format_Grayscale16://单通道16位图
		mat = cv::Mat(image.height(), image.width(), CV_16UC1, (void*)image.constBits(), image.bytesPerLine());
		break;
	default:
		return false;
	}
	return true;
}

QImageToHOjbect

int TESTHALCON::QImageToHOjbect(QImage &image, HObject *Object)
{
	
	if (image.format() == QImage::Format_RGB888
		|| image.format() == QImage::Format_RGB32
		|| image.format() == QImage::Format_Indexed8
		|| image.format() == QImage::Format_Grayscale16){}	
	else{return -1;	}
	int ret = 0;
	unsigned char  *image_red = nullptr;
	unsigned char  *image_green = nullptr;
	unsigned char  *image_blue = nullptr;
	int            r, c;

	int w = image.width();
	int h = image.height();
	try
	{
		image_red = (unsigned char  *)malloc(w*h);
		if (image.format() == QImage::Format_RGB888
			|| image.format() == QImage::Format_RGB32)
		{
			image_green = (unsigned char  *)malloc(w*h);
			image_blue = (unsigned char  *)malloc(w*h);
		}
	}
	catch (...)
	{
		free(image_red);
		free(image_green);
		free(image_blue);
		return -1;
	}


	if (image.format() == QImage::Format_RGB888)
	{
		for (r = 0; r < h; r++)
		{
			uchar* pRow = image.scanLine(r);
			for (c = 0; c < w; c++)
			{
				image_red[r*w + c] = pRow[3 * c + 0];
				image_green[r*w + c] = pRow[3 * c + 1];
				image_blue[r*w + c] = pRow[3 * c + 2];
			}
		}
		GenImage3Extern(Object, "byte", w, h, (Hlong)image_red, (Hlong)image_green, (Hlong)image_blue, (Hlong)free);
		free(image_red); free(image_green); free(image_blue);

	}
	else if (image.format() == QImage::Format_RGB32)
	{
		for (r = 0; r < h; r++)
		{
			uchar* pRow = image.scanLine(r);
			for (c = 0; c < w; c++)
			{
				image_red[r*w + c] = pRow[4 * c + 2];
				image_green[r*w + c] = pRow[4 * c + 1];
				image_blue[r*w + c] = pRow[4 * c + 0];
			}
		}
		GenImage3Extern(Object, "byte", w, h, (Hlong)image_red, (Hlong)image_green, (Hlong)image_blue, (Hlong)free);
	}
	else if (image.format() == QImage::Format_Indexed8)
	{
		for (r = 0; r < h; r++)
		{
			uchar* pRow = image.scanLine(r);
			for (c = 0; c < w; c++)
			{
				image_red[r*w + c] = pRow[c];
				//image_red[r*w + c] = 0.30 * pBmp[3 * (c + r*w) + 0] + 0.59 * pBmp[3 * (c + r*w) + 1] + 0.11 *pBmp[3 * (c + r*w) + 2];
			}
		}
		GenImage1Extern(Object, "byte", w, h, (Hlong)image_red, (Hlong)free);
	}
	else if (image.format() == QImage::Format_Grayscale16)
	{
		for (r = 0; r < h; r++)
		{
			uchar* pRow = image.scanLine(r);
			for (c = 0; c < w; c++)
			{
				image_red[r*w + c] = pRow[c];
				//image_red[r*w + c] = 0.30 * pBmp[3 * (c + r*w) + 0] + 0.59 * pBmp[3 * (c + r*w) + 1] + 0.11 *pBmp[3 * (c + r*w) + 2];
			}
		}
		//GenImage1Extern(Object, "uint2", w, h, (Hlong)image_red, (Hlong)free);
		GenImage1(Object,"tiff", w, h, (Hlong)image.data_ptr());
		WriteImage(*Object, "tiff", 0, "D:\\++++.tiff");
	}
	return ret;
}

//Halcon中的HObject类型转OpenCV中的cv::Mat类型-ok

bool TESTHALCON::HObject2Mat(const HalconCpp::HObject &Hobj, cv::Mat &Image)
{
	HalconCpp::HTuple htCh = HalconCpp::HTuple();
	HalconCpp::HTuple hv_Length, cType;
	HalconCpp::HObject ho_img;
	HObject dumpImg;
	HTuple strType[32] = { 0 };
	GetImageType(Hobj, strType);
	QString strvalue = strType[0].S();

	if (strvalue == QString("uint2"))
	{//16bit--Halcon HObject转OpenCV Mat
		HTuple channels;
		HString cType;
		ConvertImageType(Hobj, &ho_img, "uint2");
		CountChannels(ho_img, &channels);
		Hlong width = 0;
		Hlong height = 0;
		if (channels[0].I() == 1)
		{
			HImage hImg(ho_img);
			void *ptr = hImg.GetImagePointer1(&cType, &width, &height);//GetImagePointer1(Hobj, &ptr, &cType, &wid, &hgt);
			int W = width;
			int H = height;
			Image.create(H, W, CV_16UC1);
			unsigned char *pdata = static_cast<unsigned char *>(ptr);
			memcpy(Image.data, pdata, W*H*2);
		}
		else if (channels[0].I() == 3)
		{
			void *Rptr; void *Gptr; void *Bptr;
			HImage hImg(ho_img);
			hImg.GetImagePointer3(&Rptr, &Gptr, &Bptr, &cType, &width, &height);
			int W = width;
			int H = height;
			Image.create(H, W, CV_16UC3);
			vector<cv::Mat> VecM(3);
			VecM[0].create(H, W, CV_16UC1);
			VecM[1].create(H, W, CV_16UC1);
			VecM[2].create(H, W, CV_16UC1);
			unsigned char *R = (unsigned char *)Rptr;
			unsigned char *G = (unsigned char *)Gptr;
			unsigned char *B = (unsigned char *)Bptr;
			memcpy(VecM[2].data, R, W*H);
			memcpy(VecM[1].data, G, W*H);
			memcpy(VecM[0].data, B, W*H);
			cv::merge(VecM, Image);
		}
		return true;
	}
	else {
		ConvertImageType(Hobj, &ho_img, "byte");
		CountChannels(ho_img, &htCh);
		TupleLength(htCh, &hv_Length);
		if (hv_Length.L() == 0)
		{
			return false;
		}

		HalconCpp::HTuple width;
		HalconCpp::HTuple height;
		int W = 0, H = 0;

		if (htCh[0].I() == 1)
		{
			HalconCpp::HTuple ptr;
			GetImagePointer1(ho_img, &ptr, &cType, &width, &height);
			W = (int)width;
			H = (int)height;
			BYTE *p = (BYTE *)ptr[0].L();      //必须是L(),不能是I()
			Image = cv::Mat(H, W, CV_8UC1, p); //单通道
											   //或者
											   //Image.create(H, W, CV_8UC1);
											   //memcpy(Image.data, p, W * H * sizeof(BYTE));
		}
		else if (htCh[0].I() == 3)
		{
			HalconCpp::HTuple ptrR, ptrG, ptrB;
			GetImagePointer3(ho_img, &ptrR, &ptrG, &ptrB, &cType, &width, &height);
			W = (int)width;
			H = (int)height;
			Image.create(H, W, CV_8UC3); //三通道
			vector<cv::Mat> vecM(3);
			vecM[2].create(H, W, CV_8UC1);
			vecM[1].create(H, W, CV_8UC1);
			vecM[0].create(H, W, CV_8UC1);
			uchar *pr = (uchar *)ptrR[0].L();
			uchar *pg = (uchar *)ptrG[0].L();
			uchar *pb = (uchar *)ptrB[0].L();
			memcpy(vecM[2].data, pr, W * H); //Mat以bgr格式输出
			memcpy(vecM[1].data, pg, W * H);
			memcpy(vecM[0].data, pb, W * H);
			cv::merge(vecM, Image);
		}
		return true;
	}
	return false;
}

//QImage彩色转Halcon彩色

HObject TESTHALCON::QImageToHObject(QImage image)  //QImage彩色转Halcon彩色
{

	//注意:在使用这个函数之前,最好先判断图像是否三通道
	unsigned char *data = image.bits();//获取图像像素字节数据的首地址
	int width = image.width();//图像宽
	int height = image.height();//图像高
	unsigned char* dataRed = (unsigned char*)malloc(width*height);//存储处理后的数据
	unsigned char* dataGreen = (unsigned char*)malloc(width*height);//存储处理后的数据
	unsigned char* dataBlue = (unsigned char*)malloc(width*height);//存储处理后的数据
	for (int i = 0; i<height; i++) {
		for (int j = 0; j<width; j++) {
			dataRed[i*width + j] = *(data + 2);
			dataGreen[i*width + j] = *(data + 1);
			dataBlue[i*width + j] = *data;
			data += 4;
		}
	}
	HObject Image;
	GenImage3(&Image, "byte", width, height, (Hlong)(dataRed), (Hlong)(dataGreen), (Hlong)(dataBlue));
	return Image;
}

//Halcon中的HObject类型转QImage类型-ok

bool TESTHALCON::HObject2QImage(const HalconCpp::HObject &Hobj, QImage &Image)
{
	HalconCpp::HTuple htCh = HalconCpp::HTuple();
	HalconCpp::HTuple hv_Length;
	HalconCpp::HTuple cType;
	HalconCpp::HObject ho_img;
	HTuple type[] = { 0 };
	GetImageType(Hobj, type);
	QString strvalue = type[0].S();
	if (QString("byte") == strvalue) 
	{ 
		ConvertImageType(Hobj, &ho_img, "byte");
		CountChannels(ho_img, &htCh);
		TupleLength(htCh, &hv_Length);
		if (hv_Length.L() == 0)
		{
			return false;
		}
		HalconCpp::HTuple width;
		HalconCpp::HTuple height;
		int W = 0, H = 0;

		if (htCh[0].I() == 1)
		{
			HalconCpp::HTuple ptr;
			GetImagePointer1(ho_img, &ptr, &cType, &width, &height);
			W = (int)width;
			H = (int)height;
			BYTE *p = (BYTE *)ptr[0].L(); //必须是L(),不能是I()
//Set buf data
			QImage tmp = QImage(W, H, QImage::Format_Indexed8);
			Image = tmp.copy();
			memcpy(Image.bits(), p, W * H); //单通道
			QVector<QRgb> vtColorTable;
			for (int k = 0; k < 256; ++k)
			{
				vtColorTable.push_back(qRgb(k, k, k));
			}
			Image.setColorTable(vtColorTable);
		}
		else if (htCh[0].I() == 3)
		{
			HalconCpp::HTuple ptrR, ptrG, ptrB;
			GetImagePointer3(ho_img, &ptrR, &ptrG, &ptrB, &cType, &width, &height);
			W = (int)width;
			H = (int)height;
			uchar *pr = (uchar *)ptrR[0].L(); //三通道
			uchar *pg = (uchar *)ptrG[0].L();
			uchar *pb = (uchar *)ptrB[0].L();

			QImage tmp = QImage(W, H, QImage::Format_RGB888);
			Image = tmp.copy();
			int bytesPerLine = W * 3;
			int lineHeadId = 0;
			int pixId = 0;
			BYTE *data24 = Image.bits();

			for (int i = 0; i < H; i++)
			{
				lineHeadId = bytesPerLine * i;
				for (int k = 0; k < W; k++)
				{
					pixId = lineHeadId + k * 3;
					data24[pixId + 0] = pr[W * i + k];
					data24[pixId + 1] = pg[W * i + k];
					data24[pixId + 2] = pb[W * i + k];
				}
			}
		}
		return true;
	}
	else
	{
		ConvertImageType(Hobj, &ho_img, "uint2");
		CountChannels(ho_img, &htCh);
		TupleLength(htCh, &hv_Length);
		if (hv_Length.L() == 0)
		{
			return false;
		}
		HalconCpp::HTuple width;
		HalconCpp::HTuple height;
		int W = 0, H = 0;

		if (htCh[0].I() == 1)
		{
			HalconCpp::HTuple ptr;
			GetImagePointer1(ho_img, &ptr, &cType, &width, &height);
			W = (int)width;
			H = (int)height;
			BYTE *p = (BYTE *)ptr[0].L(); //必须是L(),不能是I()
										  //Set buf data
			QImage tmp = QImage(W, H, QImage::Format_Grayscale16);
			Image = tmp.copy();
			memcpy(Image.bits(), p, W * H*2); //单通道
			QVector<QRgb> vtColorTable;
			for (int k = 0; k < 256; ++k)
			{
				vtColorTable.push_back(qRgb(k, k, k));
			}
			Image.setColorTable(vtColorTable);
		}
		else if (htCh[0].I() == 3)
		{
			HalconCpp::HTuple ptrR, ptrG, ptrB;
			GetImagePointer3(ho_img, &ptrR, &ptrG, &ptrB, &cType, &width, &height);
			W = (int)width;
			H = (int)height;
			uchar *pr = (uchar *)ptrR[0].L(); //三通道
			uchar *pg = (uchar *)ptrG[0].L();
			uchar *pb = (uchar *)ptrB[0].L();

			QImage tmp = QImage(W, H, QImage::Format_RGB888);
			Image = tmp.copy();
			int bytesPerLine = W * 3;
			int lineHeadId = 0;
			int pixId = 0;
			BYTE *data24 = Image.bits();

			for (int i = 0; i < H; i++)
			{
				lineHeadId = bytesPerLine * i;
				for (int k = 0; k < W; k++)
				{
					pixId = lineHeadId + k * 3;
					data24[pixId + 0] = pr[W * i + k];
					data24[pixId + 1] = pg[W * i + k];
					data24[pixId + 2] = pb[W * i + k];
				}
			}
		}
		return true;
	}
	return false;
}

加载txt文件

void TESTHALCON::loadConfig(QString path)
{
	Mat img;
	img = imread(qApp->applicationDirPath() + "/2.tif", -1);
	QStringList v;
	QFile file(path);
	if (!file.exists())return;
	//创建QSettings对象并指定ini文件路径并将格式设置为ini
	QSettings setting(path, QSettings::NativeFormat);
	setting.setIniCodec("UTF-8");
	if (!file.open(QIODevice::ReadOnly | QIODevice::Text))//打开文件,以只读的方式打开文本文件
	{
		qDebug() << file.errorString();
	}
	else {
		QTextStream in(&file);
		QString str;

		while (!in.atEnd())
		{
			str = in.readLine();
			qDebug() << str;
			v << (str);
		}

	}
	file.close();
	for (int i = 0; i < v.size(); i++)
	{

	}
	QStringList SY;
	QFile file1(qApp->applicationDirPath() + "/defect_3072x3072.xy");
	if (!file1.exists())return;
	//创建QSettings对象并指定ini文件路径并将格式设置为ini
	QSettings setting1(qApp->applicationDirPath() + "defect_3072x3072.xy", QSettings::NativeFormat);
	setting.setIniCodec("UTF-8");
	if (!file1.open(QIODevice::ReadOnly | QIODevice::Text))//打开文件,以只读的方式打开文本文件
	{
		qDebug() << file1.errorString();
	}
	else {
		QTextStream in(&file1);
		QString str;

		while (!in.atEnd())
		{
			str = in.readLine();
			qDebug() << str;
			SY << (str);
		}
	}
	file.close();
	cv::Scalar color_blue(255, 47, 0);
	foreach (QString s, SY)
	{
		QStringList list = s.split(",");
		if (!s.contains(",")) continue;
		for(int i = 0;, i< list.size(); i++)
		{
			QString str1, str2;
			if (i == 0) { str1 = list[i]; }
			if (i == 1) { str2 = list[i]; }
			if(i ==1)
			cv::putText((img, "", cv::Point(str1, str2), cv::FONT_HERSHEY_SIMPLEX, 0.8, color_blue, 2);
		}
	}
	cv::imwrite("D:\\write_HObj_cv_6.tiff", img);
}

画点

void TESTHALCON::drawPoint(QStringList path)
{
}
/**
* @brief QImage2HImage 将 Qt QImage 转换为 Halcon 的 HImage
* @param from 输入的 QImage
* @param to 输出的 HImage ,from 和 to 不共享内存数据。 每次都会为 to 重新分配内存。
* @return true 表示转换成功,false 表示转换失败。
*/
void HObjectToQImage(HObject himage, QImage **qimage)
{
	HTuple hChannels;
	HTuple   width, height;
	width = height = 0;
	HTuple htype;
	ConvertImageType(himage, &himage, "byte");//将图片转化成byte类型
	CountChannels(himage, &hChannels);       //判断图像通道数

	if (hChannels[0].I() == 1)//单通道图
	{
		HTuple hv_pointer;
		unsigned char *ptr;
		GetImagePointer1(himage, &hv_pointer, &htype, &width, &height);

		ptr = (unsigned char *)hv_pointer[0].L();

		*(*qimage) = QImage(ptr, width, height, width, QImage::Format_Indexed8);//不知道是否已自动4字节对齐
	}
	else if (hChannels[0].I() == 3)//三通道图
	{
		HTuple hv_ptrRed, hv_ptrGreen, hv_ptrBlue;
		GetImagePointer3(himage, &hv_ptrRed, &hv_ptrGreen, &hv_ptrBlue, &htype, &width, &height);

		uchar *ptrRed = (uchar*)hv_ptrRed[0].L();
		uchar *ptrGreen = (uchar*)hv_ptrGreen[0].L();
		uchar *ptrBlue = (uchar*)hv_ptrBlue[0].L();
		int bytesperline = (width * 8 * 3 + 31) / 32 * 4;//针对位深为8的三通道图进行每行4字节对齐补齐
		int bytecount = bytesperline*height;//整个图像数据需要的字节数
		uchar* data8 = new uchar[bytecount];
		int lineheadid, pixid;
		for (int i = 0; i<height; i++)
		{
			lineheadid = bytesperline*i;//计算出图像第i行的行首在图像数据中的地址
			for (int j = 0; j<width; j++)
			{
				pixid = lineheadid + j * 3;//计算坐标为(i,j)的像素id
				data8[pixid] = ptrRed[width*i + j];
				data8[pixid + 1] = ptrGreen[width*i + j];
				data8[pixid + 2] = ptrBlue[width*i + j];
			}
		}

		*(*qimage) = QImage(data8, width, height, QImage::Format_RGB888);
	}
}

标签:转换,HalconCpp,int,image,HTuple,uchar,图像,数据格式,QImage
From: https://www.cnblogs.com/alisa5270/p/17926093.html

相关文章

  • opencv读取RAW图像
    //读取RAW图像//cv::Matraw_image=cv::imread("E:/016.raw",cv::IMREAD_UNCHANGED);//显示RAW图像/*cv::imshow("RAWImage",raw_image);*/conststd::stringpath="E:/defect-g3.raw";std::ifstreamfin;fin.open(path,std::ios::bi......
  • [ENVI] 手把手教你制作 Himawari 全圆盘图像
     1准备工作1)安装并激活 ENVI5.5及以上版本软件,可在此网页自助申请 ENVI5.6.3 试用许可:https://envi.geoscene.cn/envi_license2)在ENVI中安装扩展工具“HimawariFLDKHSD数据读取与处理工具”。 2下载数据1)访问 https://www.eo......
  • Numpy中数据类型转换的tips
    在逛StackOverflow时看见一个关于numpy的浮点数据转换的问题比较有趣,现当作tips记录下来。问题原地址我们知道,在numpy中,浮点数据同python本身一样,是用双精度(float64)来存储数据的,而Pytorch或者其他的一些框架中,为了节省运算量,其浮点是用单精度(float32)来存储数据的,因此需要用到数......
  • 图像处理—小波变换
    小波变换一维小波变换因为存在,所以存在可以在子空间中用尺度函数展开和在子空间中用某些数量的小波函数展开来表示。即其中是任意的开始尺度,通常称为近似和或尺度系数,称为细节和或小波系数。由于双正交的性质可得转换成离散形式可得其中和是基函数和由此可得通常,为2的幂(......
  • 图像的哈尔变换
    哈尔变换对于哈尔变换可以用如下矩阵表示:其中,为一个大小的图像矩阵,为一个大小的哈尔变换矩阵,一个大小的图像变换的结果对于哈尔变换矩阵包含了哈尔基函数,其中代表的第行,其中满足,其中。其中哈尔基函数为哈尔变换矩阵的第行包含了元素,其中即设N=4,则那么4×4变换矩阵为可......
  • 『LeetCode』8. 字符串转换整数 (atoi) String to Integer (atoi)
    题目描述请你来实现一个myAtoi(strings)函数,使其能将字符串转换成一个32位有符号整数(类似C/C++中的atoi函数)。函数myAtoi(strings)的算法如下:读入字符串并丢弃无用的前导空格检查下一个字符(假设还未到字符末尾)为正还是负号,读取该字符(如果有)。确定最终结果是负数还是正......
  • 人工智能算法原理与代码实战:图像处理的算法原理与实践
    1.背景介绍图像处理是人工智能领域中的一个重要分支,它涉及到将图像信息转换为数字信号,进行处理和分析,以实现各种应用。图像处理技术广泛应用于医疗诊断、安全监控、自动驾驶、人脸识别等领域。随着人工智能技术的发展,图像处理算法也不断发展和进步,从传统的图像处理算法到深度学习算......
  • 【阅读笔记】图像增强-《Efficientcontrast enhancement using adaptive gamma correc
    2013年发表在TIP上的对比度增强算法AGCWD(Efficientcontrastenhancementusingadaptivegammacorrectionwithweightingdistribution)提出了一种自动映射技术,通过亮度像素的伽马校正和概率分布来提高调暗图像的亮度。为了增强视频,所提出的图像增强方法使用关于每帧之间差异的时......
  • AI Mass人工智能大模型即服务时代:AI Mass在图像识别中的应用案例
    作者:禅与计算机程序设计艺术1.背景介绍概述随着人工智能技术的飞速发展,计算机视觉、自然语言处理等领域也得到了极大的关注。近年来,各大公司纷纷加入人工智能产品和解决方案供应商阵营,对人工智能的发展带来了巨大的变革。其中,以Google为代表的大数据及机器学习技术促进了人工智能......
  • 108. 将有序数组转换为二叉搜索树
    给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过1」的二叉树。 示例1:输入:nums=[-10,-3,0,5,9]输出:[0,-3,9,-10,null,5]解释:[0,-10,5,null,-3,nu......