首页 > 其他分享 >【Pytorch基础实战】第二节,卷积神经网络

【Pytorch基础实战】第二节,卷积神经网络

时间:2023-12-20 16:14:13浏览次数:27  
标签:nn img 卷积 self 神经网络 label Pytorch data size

项目地址

https://gitee.com/wxzcch/pytorchbase/tree/master/leason_2

源码

import torch
from torch import nn, optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

# 定义一些超参数
batch_size = 64
learning_rate = 0.02
num_epoches = 20


# 数据预处理。transforms.ToTensor()将图片转换成PyTorch中处理的对象Tensor,并且进行标准化(数据在0~1之间)
# transforms.Normalize()做归一化。它进行了减均值,再除以标准差。两个参数分别是均值和标准差
# transforms.Compose()函数则是将各种预处理的操作组合到了一起

data_tf = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize([0.5], [0.5])])

# 数据集的下载器
train_dataset = datasets.MNIST(r'.\data', train=True, transform=data_tf, download=True)
test_dataset = datasets.MNIST(r'.\data', train=False, transform=data_tf)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 架构网络
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 25, kernel_size=3),
            nn.BatchNorm2d(25),
            nn.ReLU(inplace=True)
        )   

        self.layer2 = nn.Sequential(
            nn.MaxPool2d(kernel_size=2, stride=2)
        ) 

        self.layer3 = nn.Sequential(
            nn.Conv2d(25, 50, kernel_size=3),
            nn.BatchNorm2d(50),
            nn.ReLU(inplace=True)
        )

        self.layer4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.fc = nn.Sequential(
            nn.Linear(50 * 5 * 5, 1024),
            nn.ReLU(inplace=True),
            nn.Linear(1024, 128),
            nn.ReLU(inplace=True),
            nn.Linear(128, 10)
        )

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = x.view(x.size(0), -1) # 全连接层需要展平
        x = self.fc(x)
        return x

# 实例化模型
model = CNN()

if torch.cuda.is_available():
    model = model.cuda()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

# 训练模型
epoch = 0
for data in train_loader:

    optimizer.zero_grad()
    img, label = data
    if torch.cuda.is_available():
        img = img.cuda()
        label = label.cuda()
    else:
        img = Variable(img)
        label = Variable(label)

    out = model(img)
    loss = criterion(out, label)

    loss.backward()
    optimizer.step()
    epoch+=1
    if epoch%50 == 0:
        print('epoch: {}, loss: {:.4}'.format(epoch, loss.data.item()))

# 模型评估
model.eval()
eval_loss = 0
eval_acc = 0
for data in test_loader:
    img, label = data
    # img = img.view(img.size(0), -1)
    img = Variable(img)
    if torch.cuda.is_available():
        img = img.cuda()
        label = label.cuda()

    out = model(img)
    loss = criterion(out, label)
    eval_loss += loss.data.item()*label.size(0)
    _, pred = torch.max(out, 1)
    num_correct = (pred == label).sum()
    eval_acc += num_correct.item()
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(
    eval_loss / (len(test_dataset)),
    eval_acc / (len(test_dataset))
))

标签:nn,img,卷积,self,神经网络,label,Pytorch,data,size
From: https://www.cnblogs.com/wxzcch/p/17916697.html

相关文章

  • 神经网络优化篇:为什么正则化有利于预防过拟合呢?(Why regularization reduces overfitti
    为什么正则化有利于预防过拟合呢?通过两个例子来直观体会一下。左图是高偏差,右图是高方差,中间是JustRight。现在来看下这个庞大的深度拟合神经网络。知道这张图不够大,深度也不够,但可以想象这是一个过拟合的神经网络。这是的代价函数\(J\),含有参数\(W\),\(b\)。添加正则项,它可......
  • matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类|附代码数据
    全文下载链接:http://tecdat.cn/?p=19751本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类。最近我们被客户要求撰写关于LSTM的研究报告,包括一些图形和统计输出。要训练深度神经网络对序列数据进行分类,可以使用LSTM网络。LSTM网络使您可以将序列数据输入网络,并根据序列......
  • 经典卷积神经网络LeNet&AlexNet&VGG
    LeNetLeNet-5是一种经典的卷积神经网络结构,于1998年投入实际使用中。该网络最早应用于手写体字符识别应用中。普遍认为,卷积神经网络的出现开始于LeCun等提出的LeNet网络,可以说LeCun等是CNN的缔造者,而LeNet则是LeCun等创造的CNN经典之作网络结构图由下图所示: LeNet网络总共有......
  • 神经网络优化篇:详解正则化(Regularization)
    正则化深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少的网络误差。如果怀疑神经网络过度拟合了数据,即存在高......
  • InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Conv
    InternImage:ExploringLarge-ScaleVisionFoundationModelswithDeformableConvolutions*Authors:[[WenhaiWang]],[[JifengDai]],[[ZheChen]],[[ZhenhangHuang]],[[ZhiqiLi]],[[XizhouZhu]],[[XiaoweiHu]],[[TongLu]],[[LeweiLu]],[[HongshengLi]......
  • Deformable ConvNets V2: More Deformable, Better Results 可变形卷积v2
    DeformableConvNetsV2:MoreDeformable,BetterResults*Authors:[[XizhouZhu]],[[HanHu]],[[StephenLin]],[[JifengDai]]DOI:10.1109/CVPR.2019.00953初读印象comment::(可变形卷积v2)增加了可变形卷积的数量、调制因子和额外的用来特征模仿的网络。deformab......
  • pytorch——豆瓣读书评价分析
    任务目标基于给定数据集,采用三层bp神经网络方法,编写程序并构建分类模型,通过给定特征实现预测的书籍评分的模型。选取数据在各项指标中,我认为书籍的评分和出版社、评论数量还有作者相关,和其他属性的关系并大。所以,对于出版社,我选取了出版社的平均评分和出版社在这个表格中出现......
  • 聊聊神经网络的优化算法
    优化算法主要用于调整神经网络中的超参数,使得训练数据集上的损失函数尽可能小。其核心逻辑是通过计算损失函数对参数的梯度(导数)来确定参数更新方向。SGDStochasticGradientDescent(随机梯度下降法):随机梯度下降算法是一种改进的梯度下降方法,它在每次更新参数时,只随机选择一个......
  • 神经网络优化篇:机器学习基础(Basic Recipe for Machine Learning)
    机器学习基础下图就是在训练神经网络用到的基本方法:(尝试这些方法,可能有用,可能没用)这是在训练神经网络时用到地基本方法,初始模型训练完成后,首先要知道算法的偏差高不高,如果偏差较高,试着评估训练集或训练数据的性能。如果偏差的确很高,甚至无法拟合训练集,那么要做的就是选择一个新......
  • Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition:使用大核卷
    Conv2Former:ASimpleTransformer-StyleConvNetforVisualRecognition*Authors:[[QibinHou]],[[Cheng-ZeLu]],[[Ming-MingCheng]],[[JiashiFeng]]Locallibrary初读印象comment::研究一种更有效的利用卷积编码空间特征的方法,利用卷积调制来简化自注意力操作......