首页 > 其他分享 >给祖传系统做了点 GC调优,暂停时间降低了 90%

给祖传系统做了点 GC调优,暂停时间降低了 90%

时间:2023-12-13 09:33:53浏览次数:39  
标签:晋升 04 0800 secs 调优 GC 90% 年龄

问题描述

公司某规则引擎系统,在每次发版启动会手动预热,预热完成当流量切进来之后会偶发的出现一次长达1-2秒的Young GC(流量并不大,并且LB下的每个节点都会出现该情况)

在这次长暂停之后,每一次的年轻代GC暂停时间又都恢复在20-100ms以内

2秒虽然看起来不算长吧,但规则引擎每次执行也才几毫秒,这谁能忍?而且这玩意一旦超时,出单可能也跟着超时失败!

问题分析

在分析该系统GC日志后发现,2s暂停发生在Young GC阶段,而且每次发生长暂停的Young GC都会伴随着新生代对象的晋升(Promotion)

核心JVM参数(Oracle JDK7)

-Xms10G 
-Xmx10G 
-XX:NewSize=4G 
-XX:PermSize=1g 
-XX:MaxPermSize=4g 
-XX:+



可能有人会问,为什么给这么大内存?祖传代码,内存小了跑不动!

启动后第一次年轻代GC日志

2023-04-23T16:28:31.108+0800: [GC2023-04-23T16:28:31.108+0800: [ParNew2023-04-23T16:28:31.229+0800: [SoftReference, 0 refs, 0.0000950 secs]2023-04-23T16:28:31.229+0800: [WeakReference, 1156 refs, 0.0001040 secs]2023-04-23T16:28:31.229+0800: [FinalReference, 10410 refs, 0.0103720 secs]2023-04-23T16:28:31.240+0800: [PhantomReference, 286 refs, 2 refs, 0.0129420 secs]2023-04-23T16:28:31.253+0800: [JNI Weak Reference, 0.0000000 secs]
Desired survivor size 214728704 bytes, new threshold 1 (max 15)
- age   1:  315529928 bytes,  315529928 total
- age   2:   40956656 bytes,  356486584 total
- age   3:    8408040 bytes,  364894624 total
: 3544342K->374555K(3774912K), 0.1444710 secs] 3544342K->374555K(10066368K), 0.1446290 secs] [Times: user=1.46 sys=0.09, real=0.15 secs] 


长暂停年轻代GC日志

2023-04-23T17:18:28.514+0800: [GC2023-04-23T17:18:28.514+0800: [ParNew2023-04-23T17:18:29.975+0800: [SoftReference, 0 refs, 0.0000660 secs]2023-04-23T17:18:29.975+0800: [WeakReference, 1224 refs, 0.0001400 secs]2023-04-23T17:18:29.975+0800: [FinalReference, 8898 refs, 0.0149670 secs]2023-04-23T17:18:29.990+0800: [PhantomReference, 600 refs, 1 refs, 0.0344300 secs]2023-04-23T17:18:30.025+0800: [JNI Weak Reference, 0.0000210 secs]
Desired survivor size 214728704 bytes, new threshold 15 (max 15)
- age   1:   79203576 bytes,   79203576 total
: 3730075K->304371K(3774912K), 1.5114000 secs] 3730075K->676858K(10066368K), 1.5114870 secs] [Times: user=6.32 sys=0.58, real=1.51 secs] 


从这个长暂停的GC日志来看,是发生了晋升的,在Young GC后,有363M+的对象晋升到了老年代,这个晋升操作因该就是耗时原因(ps: 检查过safepoint原因,不存在异常)

由于日志参数中没有配置-XX:+PrintHeapAtGC参数,这里是手动计算的晋升大小:

年轻代年轻变化 - 全堆容量变化 = 晋升大小
(304371K - 3730075K) - (676858K - 3730075K) = 372487K(363M)


下一次年轻代GC日志

2023-04-23T17:23:39.749+0800: [GC2023-04-23T17:23:39.749+0800: [ParNew2023-04-23T17:23:39.774+0800: [SoftReference, 0 refs, 0.0000500 secs]2023-04-23T17:23:39.774+0800: [WeakReference, 3165 refs, 0.0002720 secs]2023-04-23T17:23:39.774+0800: [FinalReference, 3520 refs, 0.0021520 secs]2023-04-23T17:23:39.776+0800: [PhantomReference, 150 refs, 1 refs, 0.0051910 secs]2023-04-23T17:23:39.782+0800: [JNI Weak Reference, 0.0000100 secs]
Desired survivor size 214728704 bytes, new threshold 15 (max 15)
- age   1:   17076040 bytes,   17076040 total
- age   2:   40832336 bytes,   57908376 total
: 3659891K->90428K(3774912K), 0.0321300 secs] 4032378K->462914K(10066368K), 0.0322210 secs] [Times: user=0.30 sys=0.00, real=0.03 secs] 


乍一看好像没什么问题,仔细想想还是发现了不对劲,为什么程序刚启动第二次gc就发生了晋升?

image.png

推测这里应该是动态年龄判定导致的,GC中晋升年龄阈值并不是固定的15,而是jvm每次gc后动态计算的

年轻代晋升机制

为了能更好地适应不同程序的内存状况,虚拟机并不是永远地要求对象的年龄必须达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄

《深入理解Java虚拟机》一书中提到,对象晋升年龄的阈值是动态判定的。

不过经查阅其他资料和验证后,发现此处和《深入理解Java虚拟机》解释的有些出入

其实就是按年龄给对象分组,取total(累加值,小于等与当前年龄的对象总大小)最大的年龄分组,如果该分组的total大于survivor的一半,就将晋升年龄阈值更新为该分组的年龄

注意:不是是超过survivor一半就晋升,超过survivor一半只会重新设置晋升阈值(threshold),在下一次GC才会使用该新阈值

3544342K->374555K(3774912K), 0.1444710 secs] 年轻代

3544342K->374555K(10066368K), 0.1446290 secs] 全堆


从上面第一次的GC日志也可以证明这个结论,在这次GC中全堆的内存变化和年轻代内存变化是相等的,所以并没有发生对象的晋升

就像上面的日志中,第一次GC只是将threshold设置为1,因为此时survivor一半为214728704 bytes,而年龄为1的对象总和有315529928 bytes,超过了Desired survivor size,所以在本次GC后将threshold设置为年龄为1的对象年龄1

这里更新了对象晋升年龄阈值为1
Desired survivor size 214728704 bytes, new threshold 1 (max 15)
- age   1:  315529928 bytes,  315529928 total
- age   2:   40956656 bytes,  356486584 total
- age   3:    8408040 bytes,  364894624 total


这里顺便解释下这个年龄分布的输出内容:

- age   1:  315529928 bytes,  315529928 total 


- age 1表示年龄为1的对象分组,315529928 bytes表示年龄为1的对象占用内存大小

315529928 total这个是一个累加值,表示小于等于当前分组年龄的对象总大小。先把对象按年龄分组,age 1的分组total为age 1总大小(前面的xxx bytes),age 2的分组total为age 1 + age 2总大小,age n的分组total为age 1 + age 2 + ... +age n的总大小,累加规则如下图所示

image.png

当total最大的分组的total值超过了survivor/2时,就会更新晋升阈值

在第二次年轻代GC“长暂停年轻代GC日志”中,由于新的晋升年龄阈值为1,所以那些经历了一次GC并存活并且现在仍然可达(reachable)的对象们就会发生晋升了

由于此次GC发生了363M的对象晋升,所以导致了长暂停

思考

JVM中这个“动态对象年龄判定”真的合理吗?

个人认为机制是好的,可以更好的适应不同程序的内存状况,但不是任何场景都适合,比如在本文中这个刚启动不就GC的场景下就会有问题

因为在程序刚启动时,大多数对象年龄都是0或者1,很容易出现年龄为1的大量存活对象;在这个“动态对象年龄判定”机制下,就会导致新的晋升阈值被设置为1,导致这些不该晋升的对象发生了晋升

比如程序在初始化,正在加载各种资源时发生了Young GC,加载逻辑还在执行中,很多新建的对象年龄在这次GC时还是可达的(reachable)

经历了这次GC后,这些对象年龄更新为1,但是由于“动态对象年龄判定”机制的影响,晋升年龄阈值更新为了“最大的对象年龄分组”的年龄,也就是这批刚经历了一次GC的对象们

在这次GC之后不久,资源初始化完成了,涉及的相关对象有很可能不可达了,但是由于刚才晋升年龄阈值被更新为了1,在下一次正常的Young GC这批年龄为1的对象会直接发生晋升,提前或者说错误的发生了晋升

解决方案

经查阅文档、资料,发现“动态年龄判定”这个机制并不能禁用,所以如果想解决这个问题,只有靠“绕过”这个计算规则了

动态年龄的判定,是根据Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半来判定的,那么根据这个机制解决也很简单

由于我们足够了解自己的系统,清楚的知道加载资源所需的大概内存,完全可以设定一个大于这些暂时可达的对象总和的数值来作为survivor的容量

比如上面的日志中,第一次GC后年龄为1的对象有315529928 Bytes(300M),Desired survivor size为(survivor size /2)214728704 bytes(204M),那么survivor就可以设置为600M以上。

不过为了稳妥,还是将survivor调到800M,这样desired survivor size就是400M左右,在第一次Young GC后,就不会因年龄为1的对象总和超过了desired survivor size而导致晋升年龄阈值的更新了,从而也就不会有提前/错误晋升而导致的GC长暂停问题

survivor不可以直接指定大小,不过可以通过-XX:SurvivorRatio这种调节比例的方式来调节survivor大小

-XX:SurvivorRatio=8


表示两个Survivor和Edgen区的比,8表示两个Survivor:Eden=2:8,即一个Survivor占新生代的1/10。

计算方式为:
CleanShot 2023-12-08 at 09.24.23@2x.png

变形一下,Eden 的大小计算公式为:

CleanShot 2023-12-08 at 09.28.35@2x.png

这里用一张堆叠柱状图来详细的解释 SurvivorRatio 不同数值下 Eden/Survivor 的空间比例:

image.png

好了,现在直接通过比例,强行给 Survivor 调大

-XX:SurvivorRatio=3


调整之后,Survivor 总占比为 40%,大小为 1717829632 Bytes,单个 S0/S1的一半也有 10% - 429457408 Bytes,远超 age=1 的分组总大小 315529928 Bytes。

这样一来, Young GC 后复制到 Survivor 的对象(最大年龄分组)占总比例的大小就不会到 50% 了,也就不会把 MaxTenuringThreshold 更新为 1 ,自然就解决了这个“乱晋升”的问题**

改完收工,再次发版手动预热后,再也没有切量后长暂停的问题了,Young GC稳定在 30-100ms,成功解决!

扩展

为什么晋升300M比年轻代回收3G还要慢这么多倍

根据复制算法的特性,复制算法的时间消耗主要取决于存活对象的大小,而不是总空间的大小

比如上面4G的年轻代(实际只有Eden+S0可用),GC时只需要从GC ROOTS开始遍历对象图,将可达的对象复制至S1即可,并不需要遍历整个年轻代

复制算法的详细介绍可以参考我的另一篇《垃圾回收算法实现之 - 复制算法(完整可运行C语言代码)》

在上面那次长暂停GC日志中,发生了363M的晋升,300M左右的回收,对比第一次GC基本可以得出,花费的1.5S基本上都是在晋升操作

为什么晋升操作这么耗时?

晋升毕竟涉及跨代复制啊(其实都年轻代和老年代都是heap,在复制这件事上本质上没什么区别,都是memcpy而已,只是需要额外处理的逻辑更多了)

,所需处理的逻辑会更复杂,比如指针的更新等操作,更耗时也是可以理解吗嘛,

本地代码模拟

这里也附上一段可以在本地模拟问题的代码,Oracle JDK7下可直接运行测试

//jdk7.。

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

public class PromotionTest {
    public static void main(String[] args) throws IOException {
        //模拟初始化资源场景
        List<Object> dataList = new ArrayList<>();
        for (int i = 0; i < 5; i++) {
            dataList.add(new InnerObject());
        }
        //模拟流量进入场景
        for (int i = 0; i < 73; i++) {
            if(i == 72){
                System.out.println("Execute young gc...Adjust promotion threshold to 1");
            }
            new InnerObject();
        }
        System.out.println("Execute full gc...dataList has been promoted to cms old space");
        //这里注意dataList中的对象在这次Full GC后会进入老年代
        System.gc();
    }
    public static byte[] createData(){
        int dataSize = 1024*1024*4;//4m
        byte[] data = new byte[dataSize];
        for (int j = 0; j < dataSize; j++) {
            data[j] = 1;
        }
        return data;
    }
    static class InnerObject{
        private Object data;

        public InnerObject() {
            this.data = createData();
        }
    }
}


jvm options

-server -Xmn400M -XX:SurvivorRatio=9 -Xms1000M -Xmx1000M -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintTenuringDistribution -XX:+PrintHeapAtGC -XX:+PrintReferenceGC -XX:+PrintGCApplicationStoppedTime -XX:+UseConcMarkSweepGC


注意,文中垃圾回收相关的机制解释,都是基于 HotSpot JVM,Parallel New + CMS Old 。

参考

作者:京东保险 蒋信

来源:京东云开发者社区 转载请注明来源

标签:晋升,04,0800,secs,调优,GC,90%,年龄
From: https://www.cnblogs.com/Jcloud/p/17898336.html

相关文章

  • 向量数据库 及 LangChain 用法
    当今科技领域的发展日新月异,向量数据库成为了热门的话题之一。这些数据库以其高效的向量检索和相似度搜索功能,为各种应用场景提供了强大的支持。本文旨在汇总向量数据库Milvus、Zilliz、Faiss、Qdrant、LlamaIndex、Chroma、LanceDB、Pinecone、Weaviate、 基本介绍1.Milv......
  • CF1900D Small GCD
    Link这是一个需要欧拉反演的题目首先,可以知道只和数字之间的大小有关,数列的顺序无关,那么就可以首先排一个序方便解决该问题。根据欧拉函数的性质,知道\(n=\sum_{d|n}\phi{(n)}\)那么我们每次先确定中间的数\(a_j\),然后根据公式,得他它得贡献是\(\sum_{i=1}^{j-1}gcd(a_{i},a_{j}......
  • 系统调用的具体过程以及注意点【包含AIGC】
    以下内容包含AIGC,我已经甄别了一遍,但是难免疏漏,如果有问题,请联系我。内容System:YouareahelpfulAIassistant.User:请说明linux操作系统的系统调用过程的全过程,并配上必要的mermaid图解Assistant:在Linux操作系统中,系统调用是用户空间进程与内核空间通交流的主要方式。......
  • 论文精读:STMGCN利用时空多图卷积网络进行移动边缘计算驱动船舶轨迹预测(STMGCN: Mobile
    《STMGCN:MobileEdgeComputing-EmpoweredVesselTrajectoryPredictionUsingSpatio-TemporalMultigraphConvolutionalNetwork》论文链接:https://doi.org/10.1109/TII.2022.3165886摘要利用移动边缘计算MEC范例提出基于时空多图卷积网络(STMGCN)的轨迹预测框。STMGCN由三......
  • 数仓调优实践丨多次关联发散导致数据爆炸案例分析改写
    本文分享自华为云社区《GaussDB(DWS)性能调优:求字段全体值中大于本行值的最小值——多次关联发散导致数据爆炸案例分析改写》,作者:Zawami。1、【问题描述】 语句中存在同一个表多次自关联,且均为发散关联,数据爆炸导致性能瓶颈。2、【原始SQL】explainverboseWITHTMPAS......
  • NVIDIA RTX4090,你能用它做什么?
    都说男生是世界上最简单的动物,为什么呢?举个例子,你要给女朋友送礼,你可以选择包、口红、护肤品、化妆品等,而包的品牌和样式、口红的色号等足以让你挑得眼花缭乱。而男生不一样,如果女生选择给男生送礼,我相信一块RTX4090就足以让他高兴得死去活来。RTX4090到底是何方神圣?它凭什么......
  • Linux性能调优的思路
    Linux的性能调优的思路点击关注......
  • GC - Garbage Collection
    在编程语言中,GC通常指的是"垃圾回收"(GarbageCollection)。在强类型语言中,如Java和C#等,GC是一种自动内存管理机制,它负责跟踪程序中创建的对象,识别不再被引用或使用的对象,并将它们释放,从而减少内存泄漏和提高程序性能。GC可以自动识别不再需要的对象,并在适当的时候将其回收,这样程......
  • GCC和gcc
    它是GNUCompilerCollection(就是GNU编译器套件),也可以简单认为是编译器。它可以编译很多种编程语言(括C、C++、Objective-C、Fortran、Java等等)。 gcc其实有两层含义:广义上是指gnu工具集,狭义上指这个gnu工具集里的c++编译器。一般前者用大写,后者用小写做区分。不过只是约定......
  • 实验六 周天意 202383290417
    实验六实验内容1.实验任务1验证性实验。输入代码,结合运行结果,观察、理解以下用法:结构体类型的定义结构体数组的输入、输出、元素访问结构体数组作为函数参数结构体类型作为函数返回值类型问题场景描述:学生成绩包括:学号、姓名、课程名称、平时成绩、期中成绩、期末成绩、总评成......