首页 > 其他分享 >Overview of Machine Learning Methods for Genome-Wide Association Analysis

Overview of Machine Learning Methods for Genome-Wide Association Analysis

时间:2023-12-08 10:58:08浏览次数:44  
标签:Wide Methods Overview Analysis Machine Genome Learning

Overview of Machine Learning Methods for Genome-Wide Association Analysis

BIBE2021: The Fifth International Conference on Biological Information and Biomedical Engineering

Overview of Machine Learning Methods for Genome-Wide Association Analysis

  • Authors:
  •  
  • Minzhu Xie   ,
  •  
  • Fang Liu  
  •  
Authors Info & Claims BIBE2021: The Fifth International Conference on Biological Information and Biomedical EngineeringJuly 2021Article No.: 4Pages 1–7https://doi.org/10.1145/3469678.3469682 Published:28 July 2021

 

ABSTRACT

Genome-wide association studies (GWAS) is an effective way to reveal the pathogenic genes of complex diseases by analyzing the genotype information and related disease phenotype information on the SNP loci of the whole genome of a large number of living organisms. Machine learning (ML) is a method that allows computers to simulate human cognitive processes to solve problems. The advantage of using machine learning methods to carry out genome-wide association analysis research is that it does not require false anchor points or gene-gene interaction models in advance Instead of exhaustive search, computer algorithms that simulate human cognitive processes can learn from a large amount of data to discover the ability of nonlinear high-dimensional gene-gene interactions. In recent years, a large number of machine learning methods have been used in the study of genome-wide association analysis. This article will briefly introduct these methods.

 

 

References

标签:Wide,Methods,Overview,Analysis,Machine,Genome,Learning
From: https://www.cnblogs.com/wangprince2017/p/17884669.html

相关文章

  • 【Azure Entra ID】如何在中国区获取用户 StrongAuthenticationUserDetails 和 Strong
    问题描述如何在中国区获取用户StrongAuthenticationUserDetails和StrongAuthenticationMethods信息?StrongAuthenticationUserDetails:包含有关用户MFA设置的信息,例如他们首选的身份验证方法、电话号码和电子邮件地址。系统使用此信息在用户尝试访问受保护资源时验证用户的身......
  • 内核文档翻译 —— Overview of the Linux Virtual File System
    原文:https://www.kernel.org/doc/html/latest/filesystems/vfs.html#overview-of-the-linux-virtual-file-systemIntroductionTheVirtualFileSystem(alsoknownastheVirtualFilesystemSwitch)isthesoftwarelayerinthekernelthatprovidesthefilesystemin......
  • vue中watch、computed、methods的执行顺序
    一、默认加载情况如果watch不加immediate:true属性(页面初加载的时候,不会执行watch,只有值变化后才执行),则只执行computed(在mounted后执行);如果watch添加immediate:true属性(在beforeCreate后created前执行),则先执行watch、再执行computed;二、触发某一事件后先执行method,再watch,再......
  • Methods of garbage disposal
    Afterthecollectionandtransportationofhouseholdwaste,itentersthetreatmentprocess.Thetreatmentmethodforhouseholdwasteiscentralizedatthewastetreatmentplant,andtherearedifferenttreatmentmethodsbasedontheclassificationofwas......
  • dev like 函数 widechar 版本
    functionLike(p1:PChar;l1:Integer;p2:PChar;l2:Integer;percent_char,underline_char,escape_char:Char):Boolean;overload;varc:Char;AEscapeFlag:Boolean;beginAEscapeFlag:=False;repeatDec(l2);ifl2<0thenBreak;......
  • vue 在模板/v-bind中使用方法methods 的问题
    每当渲染发生时,就会调用该方法并运行该函数。每次组件渲染时都会运行。模板中的函数调用会带来更大的性能成本。(相比computed)每次组件重新渲染时,vue模板中调用的函数都会执行。如果这些函数的计算成本很高,它们可能会降低应用程序的性能。你不希望这样,是吗?......
  • Modern C++ Overview综览
    ##PartI:Language(第一篇:语言)-大局观——简直像个新语言给出一个完整实例,展示(几乎)所有新特性的样貌,让学员从真实代码中一次性窥得(几乎)全豹,得知即将面对的新知和挑战。-auto,typededuction型别/型态推导是ModernC++至关重要的某种基础;这一节为后头诸多特性打好基础。-......
  • Time Series Forecasting Methods
    基于EEMD-Prophet-LSTM的滑坡位移预测LSTM与Prophet时间序列预测实验11ClassicalTimeSeriesForecastingMethodsinMATLAB-FileExchange-MATLABCentral(mathworks.com)......
  • Java 21 新特性:Unnamed Classes and Instance Main Methods
    Java21引入了两个语言核心功能:未命名的Java类你说新的启动协议:该协议允许更简单地运行Java类,并且无需太多样板下面一起来看个例子。通常,我们初学Java的时候,都会写类似下面这样的HelloWorld程序:publicclassHelloWorld{publicstaticvoidmain(String[]args){......
  • 【笔记】机器学习基础 - Ch6.5-6 Kernel Methods
    6.5Sequencekernels考虑拓展\(K:\calX\timesX\to\mathbb{R}\)到\(\calX\)不是向量空间的情况,例如序列、图像等等。现在令\(\calX\)为字符串的集合,对应的核称为序列核sequencekernels;一种序列核的框架,称为rationalkernels,建立在称为加权转换器weightedtransduce......