首页 > 其他分享 >面对突如其来的JVM 垃圾回收问题如何下手解决

面对突如其来的JVM 垃圾回收问题如何下手解决

时间:2023-12-06 17:05:42浏览次数:35  
标签:OPT JAVA LOG XX GC 垃圾 JVM 日志 突如其来

Java全能学习面试指南:https://javaxiaobear.cn

今天我们主要从一个实战案例入手分析面对突如其来的 GC 问题该如何下手解决。

想要下手解决 GC 问题,我们首先需要掌握下面这三种问题。

  • 如何使用 jstat 命令查看 JVM 的 GC 情况?
  • 面对海量 GC 日志参数,如何快速抓住问题根源?
  • 你不得不掌握的日志分析工具。

工欲善其事,必先利其器。我们前面课时讲到的优化手段,包括代码优化、扩容、参数优化,甚至我们的估算,都需要一些支撑信息加以判断。

面对突如其来的JVM 垃圾回收问题如何下手解决_JAVA

对于 JVM 来说,一种情况是 GC 时间过长,会影响用户的体验,这个时候就需要调整某些 JVM 参数、观察日志。

另外一种情况就比较严重了,发生了 OOM,或者操作系统的内存溢出。服务直接宕机,我们要寻找背后的原因。

这时,GC 日志能够帮我们找到问题的根源。本课时,我们就简要介绍一下如何输出这些日志,以及如何使用这些日志的支撑工具解决问题。

GC 日志输出

你可能感受到,最近几年 Java 的版本更新速度是很快的,JVM 的参数配置其实变化也很大。就拿 GC 日志这一块来说,Java 9 几乎是推翻重来。网络上的一些文章,把这些参数写的乱七八糟,根本不能投入生产。如果你碰到不能被识别的参数,先确认一下自己的 Java 版本。

在事故出现的时候,通常并不是那么温柔。你可能在半夜里就能接到报警电话,这是因为很多定时任务都设定在夜深人静的时候执行。

这个时候,再去看 jstat 已经来不及了,我们需要保留现场。这个便是看门狗的工作,看门狗可以通过设置一些 JVM 参数进行配置。

那在实践中,要怎么用呢?请看下面命令行。

Java 8

我们先看一下 JDK8 中的使用。

#\!/bin/sh
LOG\_DIR="/tmp/logs"
JAVA\_OPT\_LOG=" -verbose:gc"
JAVA\_OPT\_LOG="\$\{JAVA\_OPT\_LOG\} -XX:+PrintGCDetails"
JAVA\_OPT\_LOG="\$\{JAVA\_OPT\_LOG\} -XX:+PrintGCDateStamps"
JAVA\_OPT\_LOG="\$\{JAVA\_OPT\_LOG\} -XX:+PrintGCApplicationStoppedTime"
JAVA\_OPT\_LOG="\$\{JAVA\_OPT\_LOG\} -XX:+PrintTenuringDistribution"
JAVA\_OPT\_LOG="\$\{JAVA\_OPT\_LOG\} -Xloggc:\$\{LOG\_DIR\}/gc\_\%p.log"
JAVA\_OPT\_OOM=" -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=\$\{LOG\_DIR\} -XX:ErrorFile=\$\{LOG\_DIR\}/hs\_error\_pid\%p.log "
JAVA\_OPT="\$\{JAVA\_OPT\_LOG\} \$\{JAVA\_OPT\_OOM\}"
JAVA\_OPT="\$\{JAVA\_OPT\} -XX:-OmitStackTraceInFastThrow"

合成一行。

\-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps 
-XX:+PrintGCApplicationStoppedTime -XX:+PrintTenuringDistribution 
-Xloggc:/tmp/logs/gc\_\%p.log -XX:+HeapDumpOnOutOfMemoryError 
-XX:HeapDumpPath=/tmp/logs -XX:ErrorFile=/tmp/logs/hs\_error\_pid\%p.log 
-XX:-OmitStackTraceInFastThrow

然后我们来解释一下这些参数:

参数

意义

-verbose:gc

打印 GC 日志

PrintGCDetails

打印详细 GC 日志

PrintGCDateStamps

系统时间,更加可读,PrintGCTimeStamps 是 JVM 启动时间

PrintGCApplicationStoppedTime

打印 STW 时间

PrintTenuringDistribution

打印对象年龄分布,对调优 MaxTenuringThreshold 参数帮助很大

loggc

将以上 GC 内容输出到文件中

再来看下 OOM 时的参数:

参数

意义

HeapDumpOnOutOfMemoryError

OOM 时 Dump 信息,非常有用

HeapDumpPath

Dump 文件保存路径

ErrorFile

错误日志存放路径

注意到我们还设置了一个参数 OmitStackTraceInFastThrow,这是 JVM 用来缩简日志输出的。

开启这个参数之后,如果你多次发生了空指针异常,将会打印以下信息。

java.lang.NullPointerException java.lang.NullPointerException java.lang.NullPointerException java.lang.NullPointerException

在实际生产中,这个参数是默认开启的,这样就导致有时候排查问题非常不方便(很多研发对此无能为力),我们这里把它关闭,但这样它会输出所有的异常堆栈,日志会多很多。

Java 13

再看下 JDK 13 中的使用。

从 Java 9 开始,移除了 40 多个 GC 日志相关的参数。具体参见 JEP 158。所以这部分的日志配置有很大的变化。

我们同样看一下它的生成脚本。

#\!/bin/sh
LOG\_DIR="/tmp/logs"
JAVA\_OPT\_LOG=" -verbose:gc"
JAVA\_OPT\_LOG="\$\{JAVA\_OPT\_LOG\} -Xlog:gc,gc+ref=debug,gc+heap=debug,gc+age=trace:file=\$\{LOG\_DIR\}/gc\_\%p.log:tags,uptime,time,level"
JAVA\_OPT\_LOG="\$\{JAVA\_OPT\_LOG\} -Xlog:safepoint:file=\$\{LOG\_DIR\}/safepoint\_\%p.log:tags,uptime,time,level"
JAVA\_OPT\_OOM=" -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=\$\{LOG\_DIR\} -XX:ErrorFile=\$\{LOG\_DIR\}/hs\_error\_pid\%p.log "
JAVA\_OPT="\$\{JAVA\_OPT\_LOG\} \$\{JAVA\_OPT\_OOM\}"
JAVA\_OPT="\$\{JAVA\_OPT\} -XX:-OmitStackTraceInFastThrow"
echo \$JAVA\_OPT

合成一行展示。

\-verbose:gc -Xlog:gc,gc+ref=debug,gc+heap=debug,gc+age=trace:file
=/tmp/logs/gc\_\%p.log:tags,uptime,time,level -Xlog:safepoint:file=/tmp
/logs/safepoint\_\%p.log:tags,uptime,time,level -XX:+HeapDumpOnOutOfMemoryError 
-XX:HeapDumpPath=/tmp/logs -XX:ErrorFile=/tmp/logs/hs\_error\_pid\%p.log 
-XX:-OmitStackTraceInFastThrow

可以看到 GC 日志的打印方式,已经完全不一样,但是比以前的日志参数规整了许多。

我们除了输出 GC 日志,还输出了 safepoint 的日志。这个日志对我们分析问题也很重要,那什么叫 safepoint 呢?

safepoint 是 JVM 中非常重要的一个概念,指的是可以安全地暂停线程的点。

当发生 GC 时,用户线程必须全部停下来,才可以进行垃圾回收,这个状态我们可以认为 JVM 是安全的(safe),整个堆的状态是稳定的。

面对突如其来的JVM 垃圾回收问题如何下手解决_JVM_02

面对突如其来的JVM 垃圾回收问题如何下手解决_Java_03编辑

如果在 GC 前,有线程迟迟进入不了 safepoint,那么整个 JVM 都在等待这个阻塞的线程,会造成了整体 GC 的时间变长。

所以呢,并不是只有 GC 会挂起 JVM,进入 safepoint 的过程也会。这个概念,如果你有兴趣可以自行深挖一下,一般是不会出问题的。

如果面试官问起你在项目中都使用了哪些打印 GC 日志的参数,上面这些信息肯定是不很好记忆。你需要进行以下总结。比如:

“我一般在项目中输出详细的 GC 日志,并加上可读性强的 GC 日志的时间戳。特别情况下我还会追加一些反映对象晋升情况和堆详细信息的日志,用来排查问题。另外,OOM 时自动 Dump 堆栈,我一般也会进行配置”。

GC 日志的意义

我们首先看一段日志,然后简要看一下各个阶段的意义。

面对突如其来的JVM 垃圾回收问题如何下手解决_Java_04

  • 1 表示 GC 发生的时间,一般使用可读的方式打印;
  • 2 表示日志表明是 G1 的“转移暂停: 混合模式”,停顿了约 223ms;
  • 3 表明由 8 个 Worker 线程并行执行,消耗了 214ms;
  • 4 表示 Diff 越小越好,说明每个工作线程的速度都很均匀;
  • 5 表示外部根区扫描,外部根是堆外区。JNI 引用,JVM 系统目录,Classloaders 等;
  • 6 表示更新 RSet 的时间信息;
  • 7 表示该任务主要是对 CSet 中存活对象进行转移(复制);
  • 8 表示花在 GC 之外的工作线程的时间;
  • 9 表示并行阶段的 GC 总时间;
  • 10 表示其他清理活动;
  • 11表示收集结果统计;
  • 12 表示时间花费统计。

可以看到 GC 日志描述了垃圾回收器过程中的几乎每一个阶段。但即使你了解了这些数值的意义,在分析问题时,也会感到吃力,我们一般使用图形化的分析工具进行分析。

尤其注意的是最后一行日志,需要详细描述。可以看到 G C花费的时间,竟然有 3 个数值。这个数值你可能在多个地方见过。如果你手头有 Linux 机器,可以执行以下命令:

time ls /

面对突如其来的JVM 垃圾回收问题如何下手解决_Java_05


可以看到一段命令的执行,同样有三种纬度的时间统计。接下来解释一下这三个字段的意思。

  • real 实际花费的时间,指的是从开始到结束所花费的时间。比如进程在等待 I/O 完成,这个阻塞时间也会被计算在内;
  • user 指的是进程在用户态(User Mode)所花费的时间,只统计本进程所使用的时间,注意是指多核;
  • sys 指的是进程在核心态(Kernel Mode)花费的 CPU 时间量,指的是内核中的系统调用所花费的时间,只统计本进程所使用的时间。

在上面的 GC 日志中,real < user + sys,因为我们使用了多核进行垃圾收集,所以实际发生的时间比 (user + sys) 少很多。在多核机器上,这很常见。

[Times: user=1.64 sys=0.00, real=0.23 secs]

下面是一个串行垃圾收集器收集的 GC 时间的示例。由于串行垃圾收集器始终仅使用一个线程,因此实际使用的时间等于用户和系统时间的总和:

[Times: user=0.29 sys=0.00, real=0.29 secs]

那我们统计 GC 以哪个时间为准呢?一般来说,用户只关心系统停顿了多少秒,对实际的影响时间非常感兴趣。至于背后是怎么实现的,是多核还是单核,是用户态还是内核态,它们都不关心。所以我们直接使用 real 字段。

GC日志可视化

肉眼可见的这些日志信息,让人非常头晕,尤其是日志文件特别大的时候。所幸现在有一些在线分析平台,可以帮助我们分析这个过程。下面我们拿常用的 gceasy 来看一下。

以下是一个使用了 G1 垃圾回收器,堆内存为 6GB 的服务,运行 5 天的 GC 日志。

(1)堆信息

面对突如其来的JVM 垃圾回收问题如何下手解决_JVM_06


我们可以从图中看到堆的使用情况。

(2)关键信息

从图中我们可以看到一些性能的关键信息。

吞吐量:98.6%(一般超过 95% 就 ok 了);

最大延迟:230ms,平均延迟:42.8ms;

延迟要看服务的接受程度,比如 SLA 定义 50ms 返回数据,上面的最大延迟就会有一点问题。本服务接近 99% 的停顿在 100ms 以下,可以说算是非常优秀了。

面对突如其来的JVM 垃圾回收问题如何下手解决_Java_07

你在看这些信息的时候,一定要结合宿主服务器的监控去看。比如 GC 发生期间,CPU 会突然出现尖锋,就证明 GC 对 CPU 资源使用的有点多。但多数情况下,如果吞吐量和延迟在可接受的范围内,这些对 CPU 的超额使用是可以忍受的。

(3)交互式图表

面对突如其来的JVM 垃圾回收问题如何下手解决_JAVA_08

可以对有问题的区域进行放大查看,图中表示垃圾回收后的空间释放,可以看到效果是比较好的。

(4)G1 的时间耗时

面对突如其来的JVM 垃圾回收问题如何下手解决_Java_09

面对突如其来的JVM 垃圾回收问题如何下手解决_JVM_10编辑

如图展示了 GC 的每个阶段花费的时间。可以看到平均耗时最长的阶段,就是 Concurrent Mark 阶段,但由于是并发的,影响并不大。随着时间的推移,YoungGC 竟然达到了 136485 次。运行 5 天,光花在 GC 上的时间就有 2 个多小时,还是比较可观的。

(5)其他

面对突如其来的JVM 垃圾回收问题如何下手解决_JAVA_11

面对突如其来的JVM 垃圾回收问题如何下手解决_JVM_12编辑

如图所示,整个 JVM 创建了 100 多 T 的数据,其中有 2.4TB 被 promoted 到老年代。

另外,还有一些 safepoint 的信息等,你可以自行探索。

那到底什么样的数据才是有问题的呢?gceasy 提供了几个案例。比如下面这个就是停顿时间明显超长的 GC 问题。

面对突如其来的JVM 垃圾回收问题如何下手解决_Java_13

面对突如其来的JVM 垃圾回收问题如何下手解决_JAVA_14编辑

下面这个是典型的内存泄漏。

面对突如其来的JVM 垃圾回收问题如何下手解决_JVM_15

面对突如其来的JVM 垃圾回收问题如何下手解决_JAVA_16编辑

上面这些问题都是非常明显的。但大多数情况下,问题是偶发的。从基本的衡量指标,就能考量到整体的服务水准。如果这些都没有问题,就要看曲线的尖峰。

一般来说,任何不平滑的曲线,都是值得怀疑的,那就需要看一下当时的业务情况具体是什么样子的。是用户请求突增引起的,还是执行了一个批量的定时任务,再或者查询了大批量的数据,这要和一些服务的监控一起看才能定位出根本问题。

只靠 GC 来定位问题是比较困难的,我们只需要知道它有问题就可以了。后面,会介绍更多的支持工具进行问题的排解。

为了方便你调试使用,我在 GitHub 上上传了两个 GC 日志。其中 gc01.tar.gz 就是我们现在正在看的,解压后有 200 多兆;另外一个 gc02.tar.gz 是一个堆空间为 1GB 的日志文件,你也可以下载下来体验一下。

GitHub 地址:

jvm-lagou-res: 拉勾课程资源。https://kaiwu.lagou.com/course/courseInfo.htm?courseId=31#/content

另外,GCViewer 这个工具也是常用的,可以下载到本地,以 jar 包的方式运行。

在一些极端情况下,也可以使用脚本简单过滤一下。比如下面行命令,就是筛选停顿超过 100ms 的 GC 日志和它的行数(G1)。

# grep -n real gc.log | awk -F"=| " '{ if($8>0.1){ print }}' 1975: [Times: user=2.03 sys=0.93, real=0.75 secs] 2915: [Times: user=1.82 sys=0.65, real=0.64 secs] 16492: [Times: user=0.47 sys=0.89, real=0.35 secs] 16627: [Times: user=0.71 sys=0.76, real=0.39 secs] 16801: [Times: user=1.41 sys=0.48, real=0.49 secs] 17045: [Times: user=0.35 sys=1.25, real=0.41 secs]

jstat

上面的可视化工具,必须经历导出、上传、分析三个阶段,这种速度太慢了。有没有可以实时看堆内存的工具?

你可能会第一时间想到 jstat 命令。第一次接触这个命令,我也是很迷惑的,主要是输出的字段太多,不了解什么意义。

但其实了解我们在前几节课时所讲到内存区域划分和堆划分之后,再看这些名词就非常简单了。

面对突如其来的JVM 垃圾回收问题如何下手解决_JVM_17

面对突如其来的JVM 垃圾回收问题如何下手解决_JAVA_18编辑

我们拿 -gcutil 参数来说明一下。

jstat -gcutil $pid 1000

只需要提供一个 Java 进程的 ID,然后指定间隔时间(毫秒)就 OK 了。

S0 S1 E O M CCS YGC YGCT FGC FGCT GCT 0.00 0.00 72.03 0.35 54.12 55.72 11122 16.019 0 0.000 16.019 0.00 0.00 95.39 0.35 54.12 55.72 11123 16.024 0 0.000 16.024 0.00 0.00 25.32 0.35 54.12 55.72 11125 16.025 0 0.000 16.025 0.00 0.00 37.00 0.35 54.12 55.72 11126 16.028 0 0.000 16.028 0.00 0.00 60.35 0.35 54.12 55.72 11127 16.028 0 0.000 16.028

可以看到,E 其实是 Eden 的缩写,S0 对应的是 Surivor0,S1 对应的是 Surivor1,O 代表的是 Old,而 M 代表的是 Metaspace。

YGC 代表的是年轻代的回收次数,YGC T对应的是年轻代的回收耗时。那么 FGC 肯定代表的是 Full GC 的次数。

你在看日志的时候,一定要注意其中的规律。-gcutil 位置的参数可以有很多种。我们最常用的有 gc、gcutil、gccause、gcnew 等,其他的了解一下即可。

  • gc: 显示和 GC 相关的 堆信息
  • gcutil: 显示 垃圾回收信息
  • gccause: 显示垃圾回收 的相关信息(同 -gcutil),同时显示 最后一次 或 当前 正在发生的垃圾回收的 诱因
  • gcnew: 显示 新生代 信息;
  • gccapacity: 显示 各个代 的 容量 以及 使用情况
  • gcmetacapacity: 显示 元空间 metaspace 的大小;
  • gcnewcapacity: 显示 新生代大小 和 使用情况
  • gcold: 显示 老年代 和 永久代 的信息;
  • gcoldcapacity: 显示 老年代 的大小;
  • printcompilation: 输出 JIT 编译 的方法信息;
  • class: 显示 类加载 ClassLoader 的相关信息;
  • compiler: 显示 JIT 编译 的相关信息;

如果 GC 问题特别明显,通过 jstat 可以快速发现。我们在启动命令行中加上参数 -t,可以输出从程序启动到现在的时间。如果 FGC 和启动时间的比值太大,就证明系统的吞吐量比较小,GC 花费的时间太多了。另外,如果老年代在 Full GC 之后,没有明显的下降,那可能内存已经达到了瓶颈,或者有内存泄漏问题。

下面这行命令,就追加了 GC 时间的增量和 GC 时间比率两列。

jstat -gcutil -t 90542 1000 | awk 'BEGIN{pre=0}{if(NR>1) {print 12-pre) "\t" 1 ; pre=$12 } else { print $0 "\tGCT_INC\tRate"} }'   Timestamp         S0     S1     E      O      M     CCS    YGC     YGCT    FGC    FGCT     GCT    GCT_INC Rate            18.7   0.00 100.00   6.02   1.45  84.81  76.09      1    0.002     0    0.000    0.002 0.002 0.0106952            19.7   0.00 100.00   6.02   1.45  84.81  76.09      1    0.002     0    0.000    0.002 0 0.0101523

GC 日志也会搞鬼

顺便给你介绍一个实际发生的故障。

你知道 ElasticSearch 的速度是非常快的,我们为了压榨它的性能,对磁盘的读写几乎是全速的。它在后台做了很多 Merge 动作,将小块的索引合并成大块的索引。还有 TransLog 等预写动作,都是 I/O 大户。

使用 iostat -x 1 可以看到具体的 I/O 使用状况。

问题是,我们有一套 ES 集群,在访问高峰时,有多个 ES 节点发生了严重的 STW 问题。有的节点竟停顿了足足有 7~8 秒。

[Times: user=0.42 sys=0.03, real=7.62 secs]

从日志可以看到在 GC 时用户态只停顿了 420ms,但真实的停顿时间却有 7.62 秒。

盘点一下资源,唯一超额利用的可能就是 I/O 资源了(%util 保持在 90 以上),GC 可能在等待 I/O。

通过搜索,发现已经有人出现过这个问题,这里直接说原因和结果。

原因就在于,写 GC 日志的 write 动作,是统计在 STW 的时间里的。在我们的场景中,由于 ES 的索引数据,和 GC 日志放在了一个磁盘,GC 时写日志的动作,就和写数据文件的动作产生了资源争用。

面对突如其来的JVM 垃圾回收问题如何下手解决_JAVA_19

解决方式也是比较容易的,把 ES 的日志文件,单独放在一块普通 HDD 磁盘上就可以了。

小结

我们主要介绍了比较重要的 GC 日志,以及怎么输出它,并简要的介绍了一段 G1 日志的意义。对于这些日志的信息,能够帮助我们理解整个 GC 的过程,专门去记忆它投入和产出并不成正比,可以多看下 G1 垃圾回收器原理方面的东西。

接下来我们介绍了几个图形化分析 GC 的工具,这也是现在主流的使用方式,因为动辄几百 MB 的 GC 日志,是无法肉眼分辨的。如果机器的 I/O 问题很突出,就要考虑把 GC 日志移动到单独的磁盘。

我们尤其介绍了在线分析工具 gceasy,你也可以下载 gcviewer 的 jar 包本地体验一下。

最后我们看了一个命令行的 GC 回收工具 jstat,它的格式比较规整,可以重定向到一个日志文件里,后续使用 sed、awk 等工具进行分析。

面对突如其来的JVM 垃圾回收问题如何下手解决_JVM_20


标签:OPT,JAVA,LOG,XX,GC,垃圾,JVM,日志,突如其来
From: https://blog.51cto.com/xiaobear/8706602

相关文章

  • Python特殊机制之垃圾回收机制
    垃圾回收机制【1】参考博客:【5.0】Python基础之垃圾回收机制-Chimengmeng-博客园(cnblogs.com)【2】博客摘要垃圾回收机制作为python解释器自带的一种功能,其目的在于帮助系统更好的管理内存,提高程序的运行效率垃圾回收机制,用来回收不可用的变量值所占用的内存空间(在......
  • 垃圾回收机制GC
    垃圾回收机制(GC)(一)什么是垃圾回收机制垃圾回收机制简称GC,是Python解释器自带的一种机制。专门用来回收不可用的变量值所占用的内存空间(在内存中,没有变量名指向的数据都是垃圾数据)(二)垃圾回收机制原理引用计数为主,垃圾回收、分代回收为辅。Python的GC模块主要运用了“引用计......
  • JVM内存用量的再学习
    JVM内存用量的再学习背景最近解决一个SQLServer的问题耗时很久.最终找到了一个看似合理的问题解释.但是感觉不能只是总结于数据库方面因为为了解决这个问题增加了很多监控措施.所以想就这这个问题,总结一下这次问题诊断过程中学习到的JVM相关知识.一个JVM的监控图......
  • Day12 jvm 内存模型JMM
    1.jvm内存模型JMM原帖链接JMM控制Java线程之间的通信,决定一个线程对共享变量的写入何时对另一个线程可见。每条线程在自己的工作内存中对共享变量(副本)进行操作,JMM再负责把这些操作同步到主内存中JVM1.8用Metaspace(元空间)(在JVM外的本地内存中)取代了方法区(MethodArea)(在......
  • 【python入门之垃圾回收机制】---python 垃圾回收机制
    【一】引入解释器在执行到定义变量的语法时,会申请内存空间来存放变量的值,而内存的容量是有限的,这就涉及到变量值所占用内存空间的回收问题当一个变量值没有用了(简称垃圾)就应该将其占用的内存给回收掉,那什么样的变量值是没有用的呢?单从逻辑层面分析,我们定义变量将变量值存......
  • python中级之垃圾回收机制
    引入当解释器在执行到变量赋值的时候,例如:name='xiaoying',那么会向内存空间申请一块空间来存放变量的值,而内存的空间是有限的,并不能无限制的存放,那么这就涉及到了一个回收的问题,当一个变量值没用了之后,简称(垃圾),那么垃圾就该放进垃圾桶中进行回收,将其所占用的内存空间释放回收......
  • GC垃圾回收机制
    【一】垃圾回收机制是什么专门用来回收不可用的变量值所占用的内存空间(在内存中,没有变量名指向的数据都是垃圾数据)【二】为什么要有垃圾回收机制程序运行过程中会申请大量的内存空间,而对于一些无用的内存空间如果不及时清理的话会导致内存使用殆尽(内存溢出),导致程序崩溃因此......
  • JVM-垃圾回收器
    G1收集器G1收集器的内存结构完全区别去CMS,弱化了CMS原有的分代模型(分代可以是不连续的空间),将堆内存划分成一个个Region(1MB~32MB,默认2048个分区),这么做的目的是在进行收集时不必在全堆范围内进行。它主要特点在于达到可控的停顿时间,用户可以指定收集操作在多长时间内完成,即G1提......
  • JVM-常量池
    概要:1.Java基本类型的包装类的大部分都实现了常量池技术,即Byte、Short、Integer、Long、Character、Boolean;2.且数值[-128,127]的相应类型的缓存数据,但是超出此范围仍然会去创建新的对象。3.两种浮点数类型的包装类Float、Double并没有实现常量池技术。实例:Inte......
  • JVM-垃圾回收
    虚拟机栈:描述的是方法执行时的内存模型,是线程私有的,生命周期与线程相同,每个方法被执行的同时会创建栈桢(下文会看到),主要保存执行方法时的局部变量表、操作数栈、动态连接和方法返回地址等信息,方法执行时入栈,方法执行完出栈,出栈就相当于清空了数据,入栈出栈的时机很明确,所以这......