全文链接:https://tecdat.cn/?p=34459
原文出处:拓端数据部落公众号
分析师:Xu Zhang
数据变得越来越重要,其核心应用“预测”也成为各个行业以及产业变革的重要力量。对于股市来说,用人工智能来对股价进行预测成为量化投资的一个重要手段。本项目帮助客户运用powerBI获取网易财经上茅台2020年股票数据、并用SPSSmodeler 的类神经网络模型对第二天股价涨跌幅度进行预测。
数据收集和处理:
数据对于机器学习十分重要。没有合适的数据,就无法训练机器学习模型,运用powerBI上的数据爬取功能,获取网易财经上贵州茅台2020年全年数据、并进行数据清洗。
1、根据网页结构,构建参数和自定义函数
2、用URL高级功能获取茅台2020年数据
3 、用 powerQuery 编辑器对日期、涨跌幅等数据进行清洗和加工,得到规范的数据。
用 SPSSmodeler 进行数据建模
载入数据,进行数据分区,随机选取 80% 数据训练模型、 20% 的数据进行测试。
构建增强型的类神经网络模型,对第二天股票涨跌幅度进行预测
对模型进行分析:其标准差为 0.996 、线性相关性为 0.806 ,模型基本符合要求。
修改模型参数和抽样比等对模型进行优化
可以看出,第二天股价的预测值和真实值趋势基本保持一致,但是预测时间越长其预测的准确度越低。
对于股票预测,模型的准确度与数据量的大小、K线关键技术指标、模型的选择有很大的关系。通过不断地改进模型和方法,股票的走势是可以大致进行的预测的。
关于分析师
在此对Xu Zhang对本文所作的贡献表示诚挚感谢,他专注数据采集、统计分析领域。擅长Excel、MySQL、powerBI、TableauBI、SPSSmodeler、Python。
标签:预测,模型,SPSS,神经网络,涨跌幅,数据,modeler,进行 From: https://www.cnblogs.com/tecdat/p/17876647.html