Description
给定 \(n,m\),要从 \(1,2,\dots,2^n-1\) 中选 \(m\) 个无序的数,使得他们互不相同且异或和为 \(0\),问有多少种选法。
对 \(998244353\) 取模。
Solution
考虑求出有序的方案数的个数再除以 \(m!\)。
设 \(f_i\) 表示选出 \(i\) 个数的方案。
那么如果随便选前 \(i-1\) 个数,那么一定有唯一的一个数使得这个数和前 \(i-1\) 个数异或和为 \(0\),这里的方案数就是 \(A_{2^n-1}^{i-1}\)。
但是有些方案数是不合法的。
首先是前 \(i-1\) 个数异或和为 \(0\),有 \(f_{i-1}\) 种。
然后就是第 \(i\) 个数出现了重复。
那么设第 \(i\) 个数为 \(x\),那么把所有 \(i\) 个数中的两个 \(x\) 丢掉,剩下的 \(i-2\) 个数异或和一定为 \(0\),那么这一类的方案数就是 \(f_{i-2}\cdot (i-1)\cdot \left(2^n-1-\left(i-2\right)\right)\)。
所以 \(f_{i}=A_{2^n-1}^{i-1}-f_{i-1}-f_{i-2}\cdot (i-1)\cdot \left(2^n-1-\left(i-2\right)\right)\)。
时间复杂度:\(O(n+m)\)。
Code
#include <bits/stdc++.h>
// #define int int64_t
const int kMaxN = 1e6 + 5, kMod = 1e8 + 7;
namespace Modular {
template<class T>
T qpow(T bs, T idx, T kMod) {
bs %= kMod;
int ret = 1;
for (; idx; idx >>= 1, bs = 1ll * bs * bs % kMod)
if (idx & 1)
ret = 1ll * ret * bs % kMod;
return ret;
}
int inv(int x, int kMod) {
x %= kMod;
if (!x) { std::cerr << "inv error\n"; return 0; }
return qpow(x, kMod - 2, kMod);
}
template<class T, const T kMod>
T add(T x, T y) {
if (x + y >= kMod) return x + y - kMod;
else return x + y;
}
template<class T, const T kMod>
T sub(T x, T y) {
if (x - y < 0) return x - y + kMod;
else return x - y;
}
template<class T, const T kMod>
struct Mint {
T x;
Mint() { x = 0; }
template<class _T> Mint(_T _x) { x = _x; }
friend Mint operator +(Mint m1, Mint m2) { return Mint(Modular::add<T, kMod>(m1.x, m2.x)); }
friend Mint operator -(Mint m1, Mint m2) { return Mint(Modular::sub<T, kMod>(m1.x, m2.x)); }
friend Mint operator *(Mint m1, Mint m2) { return Mint(1ll * m1.x * m2.x % kMod); }
friend Mint operator /(Mint m1, Mint m2) { return Mint(1ll * m1.x * inv(m2.x, kMod) % kMod); }
Mint operator +=(Mint m2) { return x = Modular::add<T, kMod>(x, m2.x); }
Mint operator -=(Mint m2) { return x = Modular::sub<T, kMod>(x, m2.x); }
Mint operator *=(Mint m2) { return x = 1ll * x * m2.x % kMod; }
Mint operator /=(Mint m2) { return x = 1ll * x * inv(m2.x, kMod) % kMod; }
template<class _T> friend Mint operator +(Mint m1, _T m2) { return Mint(Modular::add<T, kMod>(m1.x, m2 % kMod)); }
template<class _T> friend Mint operator -(Mint m1, _T m2) { return Mint(Modular::sub<T, kMod>(m1.x, m2 % kMod)); }
template<class _T> friend Mint operator *(Mint m1, _T m2) { return Mint(1ll * m1.x * m2 % kMod); }
template<class _T> friend Mint operator /(Mint m1, _T m2) { return Mint(1ll * m1.x * inv(m2, kMod) % kMod); }
template<class _T> Mint operator +=(_T m2) { return x = Modular::add<T, kMod>(x, m2); }
template<class _T> Mint operator -=(_T m2) { return x = Modular::sub<T, kMod>(x, m2); }
template<class _T> Mint operator *=(_T m2) { return x = 1ll * x * m2 % kMod; }
template<class _T> Mint operator /=(_T m2) { return x = 1ll * x * inv(m2, kMod) % kMod; }
template<class _T> friend Mint operator +(_T m1, Mint m2) { return Mint(Modular::add<T, kMod>(m1 % kMod, m2.x)); }
template<class _T> friend Mint operator -(_T m1, Mint m2) { return Mint(Modular::sub<T, kMod>(m1 % kMod, m2)); }
template<class _T> friend Mint operator *(_T m1, Mint m2) { return Mint(1ll * m1 * m2.x % kMod); }
template<class _T> friend Mint operator /(_T m1, Mint m2) { return Mint(1ll * m1 * inv(m2.x, kMod) % kMod); }
friend Mint operator -(Mint &m1) { return Mint(m1.x == 0 ? (kMod - 1) : (m1.x - 1)); }
friend Mint operator --(Mint &m1) { return m1 = Mint(m1.x == 0 ? (kMod - 1) : (m1.x - 1)); }
friend Mint operator ++(Mint &m1) { return m1 = Mint(m1.x == (kMod - 1) ? 0 : (m1.x + 1)); }
friend bool operator ==(Mint m1, Mint m2) { return m1.x == m2.x; }
friend std::istream &operator >>(std::istream &is, Mint &m) {
int x;
is >> x;
m = Mint(x);
return is;
}
friend std::ostream &operator <<(std::ostream &os, Mint m) {
os << m.x;
return os;
}
};
} // namespace Modular
using mint = Modular::Mint<int, kMod>;
int n, m;
mint pw2, f[kMaxN];
mint Fac(int n) {
mint ret = 1;
for (int i = 1; i <= n; ++i)
ret *= i;
return ret;
}
void dickdreamer() {
std::cin >> n >> m;
pw2 = 1;
for (int i = 1; i <= n; ++i)
pw2 *= 2;
f[0] = 1;
mint A = pw2 - 1;
for (int i = 2; i <= m; ++i) {
f[i] = A - f[i - 1] - f[i - 2] * (i - 1) * (pw2 - i + 1);
A *= pw2 - i;
}
std::cout << f[m] / Fac(m) << '\n';
}
int32_t main() {
#ifdef ORZXKR
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
int T = 1;
// std::cin >> T;
while (T--) dickdreamer();
// std::cerr << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
return 0;
}
标签:kMod,return,题解,P3214,m1,m2,operator,Mint,卡农
From: https://www.cnblogs.com/Scarab/p/17873474.html