在PyTorch中创建一个简单的残差学习层(Residual Block)涉及到定义一个继承自torch.nn.Module
的类。残差学习层通常包含两个或更多的卷积层,以及跳跃连接(skip connection),允许输入直接传递到后续层。
下面是一个简单的示例,它定义了一个包含两个卷积层的残差学习层。每个卷积层后面跟着批归一化(Batch Normalization)和ReLU激活函数。跳跃连接简单地将输入添加到卷积层的输出上:
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResidualBlock(nn.Module):
def __init__(self, in_channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(in_channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = F.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual # Skip Connection
out = F.relu(out)
return out
这段代码定义了一个标准的残差学习层,它可以集成到更大的卷积神经网络中。注意,这个实现假设输入和输出的通道数相同。如果不同,你需要添加一个额外的卷积层或其他方法来调整跳跃连接中的维度。
标签:channels,nn,卷积,self,残差,学习,out From: https://www.cnblogs.com/xinxuann/p/17860285.html