首页 > 其他分享 >CodeTON Round 7 (Div. 1 + Div. 2, Rated, Prizes!)

CodeTON Round 7 (Div. 1 + Div. 2, Rated, Prizes!)

时间:2023-11-26 10:13:07浏览次数:38  
标签:Rated int texttt cin ldots Prizes Div include operation

CodeTON Round 7 (Div. 1 + Div. 2, Rated, Prizes!)

基本情况

A题花了快半小时,做出来了但是不如正解。

B题又是老毛病,一条路走到黑,爆搜打出来超时就死命想剪枝和记忆化,没想过换方法(觉得贪心不可行)。

A - Jagged Swaps

我的解法

没啥好说的,纯模拟。看到 \(n \leq 10\) 知道能过。

但是细节上出了一些问题导致快半小时才做出来。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

int a[15];

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	cout.tie(nullptr);
	int t;
	cin >> t;
	while (t--)
	{
		int n;
		cin >> n;
		bool is_right = true, is_wrong = false;
		for (int i = 1 ; i <= n; i++)
		{
			cin >> a[i];
			if (a[i] < a[i - 1])
			{
				is_right = false;
			}
			if (a[i] == a[i - 1])
			{
				is_wrong = true;
			}
		}
		if (is_right)
		{
			cout << "YES" << endl;
			continue;
		}
		if (is_wrong)
		{
			cout << "NO" << endl;
			continue;
		}
		bool toDo = false;
		bool is_solve = true;
		do
		{
			is_solve = true;
			toDo = false;
			for (int i = 2; i <= n - 1; i++)
			{
				if (a[i] > a[i + 1])
				{
					if (a[i] > a[i - 1])
					{
						toDo = true;
						swap(a[i], a[i + 1]);
					}
				}
			}

			for (int i = 2; i <= n; i++)
			{
				if (a[i] < a[i - 1] || a[i] == a[i - 1])
				{
					is_solve = false;
				}
			}
		}
		while (toDo);
		if (!is_solve)
		{
			cout << "NO" << endl;
		}
		else
		{
			cout << "YES" << endl;
		}
	}

	return 0;
}

更优解法

Observe that since we are only allowed to choose \(i \ge 2\) to swap \(a_i\) and \(a_{i+1}\), it means that \(a_1\) cannot be modified by the operation. Hence, \(a_1 = 1\) must hold. In fact, we can prove that as long as \(a_1 = 1\), we will be able to sort the array.

Consider the largest element of the array. Let its index be \(i\). Our objective is to move \(a_i\) to the end of the array. If \(i=n\), it means that the largest element is already at the end. Otherwise, since \(a_i\) is the largest element, this means that $a_{i−1}<a_i $ and \(a_i > a_{i + 1}\). Hence, we can do an operation on index \(i\) and move the largest element one step closer to the end.

We repeatedly do the operation until we finally move the largest element to the end of the array. Then, we can pretend that the largest element does not exist and do the same algorithm for the prefix of size \(n−1\). Hence, we will able to sort the array by doing this repeatedly.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector <ll> vi;
int main() {
    int t;
    cin >> t;
    while (t --> 0) {
        int n;
        cin >> n;
        vi arr(n);
        for (int i = 0; i < n; i++) {
            cin >> arr[i];
        }
        if (arr[0] == 1) {
            cout << "YES";
        } else {
            cout << "NO";
        }
        cout << '\n';
    }
}

B - AB Flipping

我的解法,搜索加剪枝,疯狂TLE。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

#define INF 0x7fffffffffffffff
#define re register

using namespace std;
using ll = long long;

inline void Swap(int &a, int &b)
{
	a = a ^ b;
	b = a ^ b;
	a = a ^ b;
	return;
}

const int N = 2e5 + 10;

int n;
int a[N];
bool vis[N];
ll ans = -INF;

inline bool check(int a, int b)
{
	return a == 65 && b == 66;
}

inline void dfs(ll now)
{
	if (now < ans)
	{
		return;
	}
	ans = now;
	for (re int i = 1; i <= n - 1; i++)
	{
		if (check(a[i], a[i + 1]) && !vis[i])
		{
			Swap(a[i], a[i + 1]);
			vis[i] = true;
			dfs(now + 1);
			Swap(a[i], a[i + 1]);
			vis[i] = false;
		}
	}
}

int main()
{
	int t;
	scanf("%d", &t);
	while (t--)
	{
		scanf("%d", &n);
		ans = -INF;
		char ch;
		getchar();
		for (re int i = 1; i <= n; i++)
		{
			ch = getchar();
			a[i] = ch;
		}
		dfs(0);
		ans = (ans == -INF) ? 0 : ans;
		printf("%lld\n", ans);
	}
	return 0;
}

正确解法(尚未理解)

If the string consists of only \(\texttt{A}\) or only \(\texttt{B}\), no operations can be done and hence the answer is \(0\).

Otherwise, let \(x\) be the smallest index where \(s_x=\texttt{A}\) and \(y\) be the largest index where \(s_y=\texttt{B}\)

If \(x>y\), this means that the string is of the form \(s=\texttt{B}\ldots\texttt{BA}\ldots\texttt{A}\) Since all the \(\texttt{B}\) are before the \(\texttt{A}\), no operation can be done and hence the answer is also \(0\).

Now, we are left with the case where \(x<y\). Note that \(s[1,x-1] = \texttt{B}\ldots\texttt{B}\) and \(s[y+1,n] = \texttt{A}\ldots\texttt{A}\) by definition. Since the operation moves \(\texttt{A}\) to the right and \(\texttt{B}\) to the left, this means that \(s[1,x - 1]\) will always consist of all \(\texttt{B}\) and \(s[y + 1, n]\) will always consist of all \(\texttt{A}\). Hence, no operation can be done from index \(1\) to \(x−1\) as well as from index \(y\) to \(n−1\).

The remaining indices where an operation could possibly be done are from \(x\) to \(y−1\). In fact, it can be proven that all \(y−x\) operations can be done if their order is chosen optimally.

Let array \(b\) store the indices of \(s\) between \(x\) and \(y\) that contain \(\texttt{B}\) in increasing order. In other words, \(x < b_1 < b_2 < \ldots < b_k = y\) and \(b_i = \texttt{B}\), where \(k\) is the number of occurences of \(\texttt{B}\) between \(x\) and \(y\). For convenience, we let \(b_0=x\). Then, we do the operations in the following order:

\[b_1 - 1, b_1 - 2, \ldots, b_0 + 1, b_0, \]

\[b_2 - 1, b_2 - 2, \ldots, b_1 + 1, b_1, \]

\[b_3 - 1, b_3 - 2, \ldots, b_2 + 1, b_2, \]

\[\vdots \]

\[b_k - 1, b_k - 2, \ldots, b_{k - 1} + 1, b_k \]

It can be seen that the above ordering does operation on all indices between \(x\) and \(y−1\). To see why all of the operations are valid, we look at each row separately. Each row starts with \(b_i−1\), which is valid as \(s_{b_i} = \texttt{B}\) and \(s_{b_i - 1} = \texttt{A}\) (assuming that it is not the last operation of the row). Then, the following operations in the same row move \(\texttt{A}\) to the left until position \(b_{i - 1}\). To see why the last operation of the row is valid as well, even though \(s_{b_{i - 1}}\) might be equal to \(\texttt{B}\) initially by definition, either \(i=1\) which means that \(s_{b_0} = s_x = \texttt{A}\), or an operation was done on index \(b_{i - 1} - 1\) in the previous row which moved \(\texttt{A}\) to index \(b_{i - 1} - 1\). Hence, all operations are valid.

#include <bits/stdc++.h>
using namespace std;
 
char s[200005];
 
signed main() {
	ios_base::sync_with_stdio(0);
	cin.tie(0); cout.tie(0);
	int tc, n; cin >> tc;
	while (tc--) {
		cin >> n; s[n + 1] = 'C';
		for (int i = 1; i <= n; ++i) cin >> s[i];
		int pt1 = 1, pt2 = 1, ans = 0;
		while (s[pt1] == 'B') ++pt1, ++pt2;
		while (pt1 <= n) {
			int cntA = 0, cntB = 0;
			while (s[pt2] == 'A') ++pt2, ++cntA;
			while (s[pt2] == 'B') ++pt2, ++cntB;
			if (s[pt2 - 1] == 'B') ans += pt2 - pt1 - 1;
			if (cntB) pt1 = pt2 - 1;
			else break;
		}
		cout << ans << '\n';
	}
}

标签:Rated,int,texttt,cin,ldots,Prizes,Div,include,operation
From: https://www.cnblogs.com/kdlyh/p/17856566.html

相关文章

  • Educational Codeforces Round 158 (Rated for Div. 2)
    EducationalCodeforcesRound158(RatedforDiv.2)基本情况A题很水,几分钟秒了。B题想到一个解,被自己hack掉之后没有重新想,一直想在自己一开始的基础上改好,结果最后B都没拿下。B.ChipandRibbon我的思路其实也是找规律,根本没严谨地证明正确性。不应该一条路走到黑的......
  • HTML <div> 和<span>
    HTML <div>和<span>HTML可以通过<div>和<span>将元素组合起来。HTML区块元素大多数HTML元素被定义为块级元素或内联元素。块级元素在浏览器显示时,通常会以新行来开始(和结束)。实例:<h1>,<p>,<ul>,<table>HTML内联元素内联元素在显示时通常不会以新行开始。......
  • Educational Codeforces Round 158 (Rated for Div. 2)
    A.LineTrip题意是:有n个加油点,人要来回两趟,问你最少要多少油?usingnamespacestd;inta[100];voidsolve(){ intn,m; cin>>n>>m; for(inti=1;i<=n;i++)cin>>a[i]; intans=a[1]; for(inti=2;i<=n;i++){ ans=max(ans,a[i]-a[i-1]); } ans=max(ans,2*(m-......
  • Educational Codeforces Round 158 (Rated for Div. 2) A-C
    A大致题意:有一条长度为x的直线公路,最开始你位于0号点并且此时你的油箱装满了油,公路有n个加油站,当你经过加油站的时候你可以在加油站加满油,每走一个单位需要花费1升油量,起始位置和终点没有加油站,请问你的油箱容量至少为多少升才可以够你跑一个来回。解题思路:我们的路径大致是......
  • Codeforces Round 905 (Div. 3)
    CodeforcesRound905(Div.3)A.Morning题意:操作:显示,向前走都为一次操作;目标:显示这四个数思路:0->10,然后依次作差就行#include<bits/stdc++.h>usingnamespacestd;voidsolve(){chara[4];intmi=100,sum=4,b[4];for(inti=0;i<4;i++){cin>>a[i]......
  • Codeforces Round 903 (Div. 3)
    CodeforcesRound903(Div.3)A.Don'tTrytoCount大概题意给你两个字符串a,b。a串可进行的操作为将整个a串复制到之前的a串后面(直接用a+a即可),然后看操作多少次可以让b串变为a串的子串如果不能就输出-1。#include<iostream>usingnamespacestd;stringa,b;voidsolve()......
  • Codeforces Round 910 (Div. 2)
    CodeforcesRound910(Div.2)A.MilicaandString解题思路:统计给定字符串\(s\)中的\(B\)的数量,记录为\(cnt\)。如果\(cnt==k\):输出0;如果\(cnt<k\):从左往右数,将第\(cnt-k\)个\(A\)的位置前的数全部变成\(B\).如果\(cnt>k\):从左往右数,将第\(k-cnt\)个\(B\)的......
  • Graph Neural Networks with Diverse Spectral Filtering
    目录概符号说明DSF代码GuoJ.,HuangK,YiX.andZhangR.Graphneuralnetworkswithdiversespectralfiltering.WWW,2023.概为每个结点赋予不同的多项式系数.符号说明\(\mathcal{V}\),nodeset,\(|\mathcal{V}|=N\);\(\mathcal{E}\),edgeset;\(\mathcal{......
  • 子元素div如何占满整个td标签
    答:两种思路。思路一、放弃表格自带的自适应功能,也就是内容不会自动垂直居中,高度也不会由内容伸展。将div相对td绝对定位,div的边缘都紧贴td的边缘。td{position:relative;}div{position:abolsute;top:0;right:0;bottom:0;left:0;}思路二......
  • Codeforces Round 697 (Div. 3)
    A.OddDivisor#include<bits/stdc++.h>usingnamespacestd;#defineintlonglong//#defineint__int128#definedoublelongdoubletypedefpair<int,int>PII;typedefpair<string,int>PSI;typedefpair<string,string>PSS;constintN=......