首页 > 其他分享 >函数计算的新征程:使用 Laf 构建 AI 知识库

函数计算的新征程:使用 Laf 构建 AI 知识库

时间:2023-11-24 11:14:10浏览次数:43  
标签:AI text Laf 知识库 文档 embedding Sealos 向量

Laf 已成功上架 Sealos 模板市场,可通过 Laf 应用模板来一键部署!

这意味着 Laf 在私有化部署上的扩展性得到了极大的提升

Sealos 作为一个功能强大的云操作系统,能够秒级创建多种高可用数据库,如 MySQL、PostgreSQL、MongoDB 和 Redis 等,也可以一键运行各种消息队列和微服务,甚至 GPU 集群上线后还可以跑各种 AI 大模型。

Laf 一键部署到 Sealos 中,我们就可以在 Laf 中直接通过内网调用 Sealos 提供的所有这些能力。无论用户需要什么样的后端支持,只需在 Sealos 上运行相应的服务即可。这种集成模式不仅提高了资源的利用效率,而且还提供了无缝的技术集成,使得 Laf 成为一个更加强大和多功能的 Serverless 平台,弥补了传统 Serverless 平台在后端能力方面的不足。

Sealos 强大的模板市场提供了丰富的应用生态,用户可以在模板市场中一键部署各种应用。本文以 Elasticsearch 为例,展示如何在 Laf 中调用 Sealos 模板市场中部署的 Elasticsearch 来搭建一个向量数据库,提供定制化知识库搜索能力。

背景知识

如果我们想往大模型里边注入知识,最先能想到的就是对大模型进行微调,大模型有很好的根据上文来回答问题的能力。

假设一个场景,我有个问题是:“请给我介绍一下万能青年旅店这支乐队 “(假设模型内部并没有存储万青的相关信息),然后我有个 100w 字的文档,里边包含了世界上所有乐队的介绍。如果模型对无限长的输入都有很好的理解能力,那么我可以设计这样一个输入 “以下是世界上所有乐队的介绍:[插入 100w 字的乐队简介文档],请根据上文给我介绍一下万青这支乐队”,让模型来回答我的问题。但模型支持的输入长度是很有限的,比如 ChatGPT 只支持 32K Token 长度的输入 (大约 50 页文本)。

实际上,如果想让大模型根据文档来回答问题,必须要精简在输入中文档内容的长度。一种做法是,我们可以把文档切成若干段,只将少量的和问题有关的文档片段拿出来,放到大模型的输入里。至此,”大模型外挂数据库 “的问题转换成了 “文本检索的问题” 了,目标是根据问题找出文档中和问题最相关的片段,这已经和大模型本身完全无关了。

文本检索里边比较常用的是利用向量进行检索,我们可以把文档片段全部向量化 (通过语言模型,如 bert 等),然后存到向量数据库 (如 Annoy、FAISS、hnswlib 等) 里边,来了一个问题之后,也对问题语句进行向量话,以余弦相似度或点积等指标,计算在向量数据库中和问题向量最相似的 top k 个文档片段,作为上文输入到大模型中。

向量数据库都支持近似搜索功能,在牺牲向量检索准确度的情况下,提高检索速度。完整流程图如下所示:

按照这个思路我们需要做的事情有两个,一个是把文档向量化,另一个是搭建一个向量数据库。文档向量化最简单的方法可以使用 openai 提供的转化接口将文档转化成向量数组,除此之外还可以通过 bert 模型。OpenAI 还给出了向量数据库参考选项,建议我们使用 cosin 相似度公式来求向量相似度:

\[\cos (\theta) = \frac {A.B} {\|A\| \|B\|} = \frac {\sum _{i=1}^{n} A_i B_i} {\sqrt {\sum_ {i=1}^{n} A_i^2} \sqrt {\sum_ {i=1}^{n} B_i^2}} \]

如何在 Sealos 上快速部署向量数据库呢?从 OpenAI 的推荐上我们看到了里面有个 Elasticsearch 选项,那我们就用它了。

部署 Laf 与 Elasticsearch

首先我们需要打开 Sealos 公有云桌面:https://cloud.sealos.top

Sealos 是完全开源的,您也可以通过 Sealos 构建自己的私有云:https://sealos.run/self-hosting

然后进入 “模板市场”,通过 Laf 模板与 Elasticsearch 模板分别部署 Laf 和 Elasticsearch。

然后在 Laf 中新建一个应用,安装依赖 elastic/elasticsearch

一旦应用创建完毕,您可以使用云函数代码来连接 Elasticsearch。在此示例中,我们直接插入了 10 条测试数据 (为了简化演示过程,我们直接使用了测试数据,并没有用 OpenAI 的接口去生成文档的向量数据)。

import cloud from '@lafjs/cloud'
const { Client } = require('@elastic/elasticsearch')
const ca = `-----BEGIN CERTIFICATE-----
MIIDITCCAgmgAwIBAgIQQKs5V2terYVNUrHt9K0CzTANBgkqhkiG9w0BAQsFADAb
MRkwFwYDVQQDExBlbGFzdGljc2VhcmNoLWNhMB4XDTIzMTEyMjA3MDcxOFoXDTI0
MTEyMTA3MDcxOFowGzEZMBcGA1UEAxMQZWxhc3RpY3NlYXJjaC1jYTCCASIwDQYJ
KoZIhvcNAQEBBQADggEPADCCAQoCggEBAPYyHrFgyoD3Pkkc/ekXhHGKi+qKPBbp
afPuGImQfTtkGlzhaHJ7Iy3MZojP/iyt3FTY+LvxODsbkgIrQJWwiG2s26rw03Zd
lphf7RULRa9Z/TKt0jxHV9M419ge2zRij6Al3uUHCP2FxjVMgYjuFisKwNalQfUE
spCTq9lWNp4bKP32GieEBQKeNRD8ElNBJkInIA2aTyH2TIhyICK0f5GjH52rxKeV
wrE/BHq8zomHRVtTM67KHoXc9RJgYNICfooeDHvi/f9f+pWrX881rmbNWXGcxu2u
GQLqCAkqpIpUwn5HAoSvUYHmxwgaDC866fjsgxv/6DMDJuGPmfsBqQMCAwEAAaNh
MF8wDgYDVR0PAQH/BAQDAgKkMB0GA1UdJQQWMBQGCCsGAQUFBwMBBggrBgEFBQcD
AjAPBgNVHRMBAf8EBTADAQH/MB0GA1UdDgQWBBQaGk9O4hQFjJPU6ay8qqU8CNug
uzANBgkqhkiG9w0BAQsFAAOCAQEAfZUesinfp1jeSqfHBSPHOgZ1q/v8xoClEPRl
wzh8sbL14iuuSb190J8zQefvzxC7ip4kVCVTW52fBZNyoMpvj0cXKWRGFmz3yHIs
TNdwOy15mQRQGbOTDBkQ528SbrmrWF4W7kDMoWs0t02UIlSfBWDjJrVharRR9QuF
cGjoS59TCAFcHHUsPO3lcUT1TCq/W4xnds3zBxJiGeIdmDqE6DbS78YfwP9rhTx0
oxcQwpKaOj8vxQNQxNbJRmWgffx0PgUzFPni/N5FgFQQXDPG4i0gMciekHWz8VRM
pp2z1uD1lVdDa/83w/IZCQOqDU7cRjDosg+gaAefFGNMHVbPBw==
-----END CERTIFICATE-----
`

export default async function (ctx: FunctionContext) {

  const client = new Client({
    node: 'https://elasticsearch-master.ns-wz9g09tc.svc.cluster.local:9200',
    auth: {
      username: 'elastic',
      password: 'zhtvadgdinhkyirozeznxlxd'
    },
    tls: {
      ca: ca,
      rejectUnauthorized: false
    }
  })

  const health = await client.cluster.health()
  console.log(health)
  // 删除已存在的索引(如果有)
  await client.indices.delete({
    index: 'vectors',
    ignore_unavailable: true
  })

  // 创建一个新的向量索引
  await client.indices.create({
    index: 'vectors',
    body: {
      mappings: {
        properties: {
          embedding: {
            type: 'dense_vector',
            // 向量列表的长度
            dims: 3,
            index:true,
            // 字段索引,consin函数求相似度
            similarity:'cosine'
          },
          text: {
            type: 'text'
          }
        }
      }
    }
  })

// 测试数据
  const documents = [
    { embedding: [0.5, 10, 6], text: 'text1' },
    { embedding: [-0.5, 10, 10], text: 'text2' },
    { embedding: [1.0, 5, 8], text: 'text3' },
    { embedding: [-0.2, 8, 12], text: 'text4' },
    { embedding: [0.8, 12, 4], text: 'text5' },
    { embedding: [-0.7, 6, 14], text: 'text6' },
    { embedding: [0.3, 14, 2], text: 'text7' },
    { embedding: [-0.4, 16, 8], text: 'text8' },
    { embedding: [0.6, 8, 10], text: 'text9' },
    { embedding: [-0.6, 12, 6], text: 'text10' }
  ];

// 插入测试数据
  for (const doc of documents) {
    await client.index({
      index: 'vectors',
      document: doc,
      refresh: true
    });
  }

  // Define the vector to search for
  const query_vector = [0.2, 12, 5]

  const body = await client.knnSearch({
    index: 'vectors',
    knn: {
      field: 'embedding',
      query_vector: query_vector,
      k: 3,
      num_candidates: 5
    },
    _source: ["text"]
  });


  // 输出搜索结果
  console.log(JSON.stringify(body, null, 2))

  return { data: 'hi, laf' }
}

通过 cosin 相似度搜索,我们找到了与向量 [0.2, 12, 5] 最相似的三条向量数据。这些数据的文本分别是 text8text5text10

Elasticsearch 内网调用地址如下:

ca 的值就是 Elasticsearch 的证书,Elasticsearch 的证书可以通过命令行来获取,先在 Sealos 桌面中打开 “终端” App,然后执行以下命令获取证书:

kubectl get secret elasticsearch-master-certs -o jsonpath="{.data.ca\.crt}"|base64 -d

Elasticsearch 的用户名密码可以通过以下命令获取:

$ kubectl get secret elasticsearch-master-credentials -o jsonpath="{.data.username}"|base64 -d && echo
elastic
$ kubectl get secret elasticsearch-master-credentials -o jsonpath="{.data.password}"|base64 -d && echo
xurcwgjxpfztmgjquufyyiml

至此简单的 Demo 已经完成了,后续我们需要做的就是持续地向我们的向量数据库中添加更多文档的向量化数据,通过这种方式,我们可以构建起一个功能强大的知识库。当用户提问时,先将用户问题转换成向量数据,然后在向量数据库中找到最相似的文档,将文档作为上文输入到大模型中,最后大模型输出答案。我们的明星项目 FastGPT 就是这样做的哦。另外不难看出 Bing Chat 也是异曲同工。

总结

通过将 Laf 集成到 Sealos 云操作系统中,可以更高效地利用云操作系统的资源。用户可以直接在 Laf 中调用 Sealos 提供的各种数据库和服务,如 MySQL、PostgreSQL、MongoDB 和 Redis 等,以及消息队列和微服务,实现资源的最大化利用。这种集成方式使得 Laf 成为了一个功能更加全面的 Serverless 平台。尤其是在后端能力方面,这种集成提供了一个无缝的解决方案,弥补了传统 Serverless 平台的不足。

标签:AI,text,Laf,知识库,文档,embedding,Sealos,向量
From: https://www.cnblogs.com/ryanyangcs/p/17853286.html

相关文章

  • ConfigureAwait in .NET8
    ConfigureAwaitin.NET8ConfigureAwait(true)和ConfigureAwait(false)首先,让我们回顾一下原版ConfigureAwait的语义和历史,它采用了一个名为continueOnCapturedContext的布尔参数。当对任务(Task、Task<T>、ValueTask或ValueTask<T>)执行await操作时,其默认行为是捕获“上......
  • 【拓展】图的渲染工具-Mermaid
    【拓展】图的渲染工具-Mermaid目录【拓展】图的渲染工具-MermaidMermaid简介Mermaid能绘制哪些图绘图示例流程图Flowchart饼图Pie甘特图GanttMermaid语法学习相关资料流程图甘特图Mermaid简介Mermaid是一个基于JavaScript的图表和图表工具,可呈现受Markdown启发的文本定义......
  • 不用编程超简单的自动化测试工具:Airtest入门篇教程
    一、背景很多刚入行或从其他行业转行做测试的同学,日复一日每天做点工已经点得疲惫和麻木,觉得做测试和在厂子里打螺丝没太大区别。也想着做一做自动化测试,奈何自己看着代码就头痛,当初就是因为不喜欢编程才选择的做测试。亦或者由于从其他行业转行过来的,隔行如隔山,编程太痛苦。那......
  • Python中,if __name__=="__main__"学习
    注意:Python的代码执行,都是依次从上往下执行在Python中,每个模块都有一个内置的变量name,用于表示当前模块的名称。当一个Python文件被执行时,Python解释器会首先将该文件作为一个模块导入,并执行其中的代码。此时,__name__的值为模块的名称。ifname==‘main’是一个常见的用法,它......
  • 行行AI直播:开除、斗殴、抢公章 | 商战真这么朴素?还原真实商战与权斗!
    提起商战,你脑海中会浮现什么样的画面?是两大集团风云人物,杀伐果断,有勇有谋,高手过招,最低限度起码得互相安插间谍,进行高科技窃密,高阶点直接上演“商业帝国三部曲”!还是隐身于幕后的神秘大佬轻声对身边的下属吩咐两句,各大金融市场上就立刻风云变幻?与大家想象中截然不同的是,现实生活中......
  • Soul CEO张璐深耕AIGC领域,为行业数字化发展提供创新样本
    随着AIGC技术的快速发展,人工智能进入2.0时代。AIGC技术融合了GAN、CLIP、Transformer、Diffusion、预训练模型、多模态技术、生成算法等多种技术,具有强大的基础能力和通用性,正逐渐成为各大互联网巨头争相竞争的赛道。据艾瑞咨询预测,中国AIGC产业规模2023年约为143亿元,2028年预......
  • OpenAI 曾收到 AI 重大突破警告;半独立的 OpenAI 比与微软合并更好丨 RTE 开发者日报 V
      开发者朋友们大家好:这里是「RTE开发者日报」,每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享RTE(RealTimeEngagement)领域内「有话题的新闻」、「有态度的观点」、「有意思的数据」、「有思考的文章」、「有看点的会议」,但内容仅代表编辑的......
  • 浅析智慧社区建设趋势及AI大数据监管平台方案设计
    一、背景与需求伴随着社会与经济的发展,人们对生活质量的要求越来越高,与此同时,新兴技术的进步也促进了智慧社区市场的逐步成熟。智慧社区是社区管理的一种新理念,是新形势下城市与社会管理的一种创新模式。在上海、杭州、深圳、苏州、北京等城市中,已经率先开启了智慧社区建设的实......
  • Kali使用Aircrack-ng进行暴力破译WIFI密码
    @TOC一、什么是Aircrack-ngAircrack-ng是一个与802.11标准的无线网络分析有关的安全软件,主要功能有:网络侦测,数据包嗅探,WEP和WPA/WPA2-PSK破译。Aircrack-ng可以工作在任何支持监听模式的无线网卡上(设备列表请参阅其官方网站)并嗅探802.11a,802.11b,802.11g的数据。该程序可运行在Linux......
  • 浅析智慧社区建设趋势及AI大数据监管平台方案设计
    一、背景与需求伴随着社会与经济的发展,人们对生活质量的要求越来越高,与此同时,新兴技术的进步也促进了智慧社区市场的逐步成熟。智慧社区是社区管理的一种新理念,是新形势下城市与社会管理的一种创新模式。在上海、杭州、深圳、苏州、北京等城市中,已经率先开启了智慧社区建设的实践。......