首页 > 其他分享 >教你如何使用PyTorch解决多分类问题

教你如何使用PyTorch解决多分类问题

时间:2023-11-22 11:24:19浏览次数:39  
标签:loss torch 模型 分类 CrossEntropyLoss PyTorch 解决 self

本文分享自华为云社区《使用PyTorch解决多分类问题:构建、训练和评估深度学习模型》,作者: 小馒头学Python。

引言

当处理多分类问题时,PyTorch是一种非常有用的深度学习框架。在这篇博客中,我们将讨论如何使用PyTorch来解决多分类问题。我们将介绍多分类问题的基本概念,构建一个简单的多分类神经网络模型,并演示如何准备数据、训练模型和评估结果。

什么是多分类问题?

多分类问题是一种机器学习任务,其中目标是将输入数据分为多个不同的类别或标签。与二分类问题不同,多分类问题涉及到三个或更多类别的分类任务。例如,图像分类问题可以将图像分为不同的类别,如猫、狗、鸟等。

处理步骤

  • 准备数据:

收集和准备数据集,确保每个样本都有相应的标签,以指明其所属类别。

划分数据集为训练集、验证集和测试集,以便进行模型训练、调优和性能评估。

  • 数据预处理:

    对数据进行预处理,例如归一化、标准化、缺失值处理或数据增强,以确保模型训练的稳定性和性能。

  • 选择模型架构:

    选择适当的深度学习模型架构,通常包括卷积神经网络(CNN)、循环神经网络(RNN)、Transformer等,具体取决于问题的性质。

  • 定义损失函数:

    为多分类问题选择适当的损失函数,通常是交叉熵损失(Cross-Entropy Loss)。

  • 选择优化器:

    选择合适的优化算法,如随机梯度下降(SGD)、Adam、RMSprop等,以训练模型并调整权重。

  • 训练模型:

    使用训练数据集来训练模型。在每个训练迭代中,通过前向传播和反向传播来更新模型参数,以减小损失函数的值。

  • 评估模型:

    使用验证集来评估模型性能。常见的性能指标包括准确性、精确度、召回率、F1分数等。

  • 调优模型:

    根据验证集的性能,对模型进行调优,可以尝试不同的超参数设置、模型架构变化或数据增强策略。

  • 测试模型:

    最终,在独立的测试数据集上评估模型的性能,以获得最终性能评估。

  • 部署模型:

    将训练好的模型部署到实际应用中,用于实时或批处理多分类任务。

多分类问题

之前我们讨论的问题都是二分类居多,对于二分类问题,我们若求得p(0),南无p(1)=1-p(0),还是比较容易的,但是本节我们将引入多分类,那么我们所求得就转化为p(i)(i=1,2,3,4…),同时我们需要满足以上概率中每一个都大于0;且总和为1。

处理多分类问题,这里我们新引入了一个称为Softmax Layer

cke_138.png

接下来我们一起讨论一下Softmax Layer层

cke_14911.png

首先我们计算指数计算e的zi次幂,原因很简单e的指数函数恒大于0;分母就是e的z1次幂+e的z2次幂+e的z3次幂…求和,这样所有的概率和就为1了。

下图形象的展示了Softmax,Exponent这里指指数,和上面我们说的一样,先求指数,这样有了分子,再将所有指数求和,最后一一divide,得到了每一个概率。

cke_140.png

接下来我们一起来看看损失函数

cke_141.png

如果使用numpy进行实现,根据刘二大人的代码,可以进行如下的实现

import numpy as np

y = np.array([1,0,0])

z = np.array([0.2,0.1,-0.1])

y_pred = np.exp(z)/np.exp(z).sum()

loss = (-y * np.log(y_pred)).sum()

print(loss)

运行结果如下

cke_142.png

注意:神经网络的最后一层不需要激活

在pytorch中

import torch

y = torch.LongTensor([0]) # 长整型

z = torch.Tensor([[0.2, 0.1, -0.1]])

criterion = torch.nn.CrossEntropyLoss()

loss = criterion(z, y)

print(loss)

运行结果如下

cke_143.png

下面根据一个例子进行演示

criterion = torch.nn.CrossEntropyLoss()

Y = torch.LongTensor([2,0,1])

Y_pred1 = torch.Tensor([[0.1, 0.2, 0.9],

[1.1, 0.1, 0.2],

[0.2, 2.1, 0.1]])

Y_pred2 = torch.Tensor([[0.8, 0.2, 0.3],

[0.2, 0.3, 0.5],

[0.2, 0.2, 0.5]])

l1 = criterion(Y_pred1, Y)

l2 = criterion(Y_pred2, Y)

print("Batch Loss1 = ", l1.data, "\nBatch Loss2=", l2.data)

运行结果如下

cke_144.png

根据上面的代码可以看出第一个损失比第二个损失要小。原因很简单,想对于Y_pred1每一个预测的分类与Y是一致的,而Y_pred2则相差了一下,所以损失自然就大了些

MNIST dataset的实现

首先第一步还是导包

import torch

from torchvision import transforms

from torchvision import datasets

from torch.utils.data import DataLoader

import torch.nn.functional as F

import torch.optim as optim

之后是数据的准备

batch_size = 64

# transform可以将其转化为0-1,形状的转换从28×28转换为,1×28×28

transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307, ), (0.3081, )) # 均值mean和标准差std

])

train_dataset = datasets.MNIST(root='../dataset/mnist/',

train=True,

download=True,

transform=transform)

train_loader = DataLoader(train_dataset,

shuffle=True,

batch_size=batch_size)

test_dataset = datasets.MNIST(root='../dataset/mnist/',

train=False,

download=True,

transform=transform)

test_loader = DataLoader(test_dataset,

shuffle=False,

batch_size=batch_size)

cke_145.png

cke_29794.png

接下来我们构建网络

class Net(torch.nn.Module):

def __init__(self):

super(Net, self).__init__()

self.l1 = torch.nn.Linear(784, 512)

self.l2 = torch.nn.Linear(512, 256)

self.l3 = torch.nn.Linear(256, 128)

self.l4 = torch.nn.Linear(128, 64)

self.l5 = torch.nn.Linear(64, 10)

def forward(self, x):

x = x.view(-1, 784)

x = F.relu(self.l1(x))

x = F.relu(self.l2(x))

x = F.relu(self.l3(x))

x = F.relu(self.l4(x))

return self.l5(x) # 注意最后一层不做激活

model = Net()

cke_147.png

之后定义损失和优化器

criterion = torch.nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

接下来就进行训练了

def train(epoch):

running_loss = 0.0

for batch_idx, data in enumerate(train_loader, 0):

inputs, target = data

optimizer.zero_grad()

# forward + backward + update

outputs = model(inputs)

loss = criterion(outputs, target)

loss.backward()

optimizer.step()

running_loss += loss.item()

if batch_idx % 300 == 299:

print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))

running_loss = 0.0

def test():

correct = 0

total = 0

with torch.no_grad(): # 这里可以防止内嵌代码不会执行梯度

for data in test_loader:

images, labels = data

outputs = model(images)

_, predicted = torch.max(outputs.data, dim=1)

total += labels.size(0)

correct += (predicted == labels).sum().item()

print('Accuracy on test set: %d %%' % (100 * correct / total))

最后调用执行

if __name__ == '__main__':

for epoch in range(10):

train(epoch)

test()

NLLLoss 和 CrossEntropyLoss

NLLLoss 和 CrossEntropyLoss(也称为交叉熵损失)是深度学习中常用的两种损失函数,用于测量模型的输出与真实标签之间的差距,通常用于分类任务。它们有一些相似之处,但也有一些不同之处。

相同点:

用途:两者都用于分类任务,评估模型的输出和真实标签之间的差异,以便进行模型的训练和优化。

数学基础:NLLLoss 和 CrossEntropyLoss 本质上都是交叉熵损失的不同变种,它们都以信息论的概念为基础,衡量两个概率分布之间的相似度。

输入格式:它们通常期望模型的输出是一个概率分布,表示各个类别的预测概率,以及真实的标签。

不同点:

输入格式:NLLLoss 通常期望输入是对数概率(log probabilities),而 CrossEntropyLoss 通常期望输入是未经对数化的概率。在实际应用中,CrossEntropyLoss 通常与softmax操作结合使用,将原始模型输出转化为概率分布,而NLLLoss可以直接使用对数概率。

对数化:NLLLoss 要求将模型输出的概率经过对数化(取对数)以获得对数概率,然后与真实标签的离散概率分布进行比较。CrossEntropyLoss 通常在 softmax 操作之后直接使用未对数化的概率值与真实标签比较。

输出维度:NLLLoss 更通用,可以用于多种情况,包括多类别分类和序列生成等任务,因此需要更多的灵活性。CrossEntropyLoss 通常用于多类别分类任务。

总之,NLLLoss 和 CrossEntropyLoss 都用于分类任务,但它们在输入格式和使用上存在一些差异。通常,选择哪个损失函数取决于你的模型输出的格式以及任务的性质。如果你的模型输出已经是对数概率形式,通常使用NLLLoss,否则通常使用CrossEntropyLoss。

 

点击关注,第一时间了解华为云新鲜技术~

 

标签:loss,torch,模型,分类,CrossEntropyLoss,PyTorch,解决,self
From: https://www.cnblogs.com/huaweiyun/p/17848541.html

相关文章

  • 解决问题:Unable to start embedded container; nested exception is java.lang.NoSuch
    因为有重复的jar原因:springboot有自己的tomcat运行环境我们又在构件路径中添加了tomcat解决方法:把项目构件路径中的tomcat给移除 ......
  • 这个代码运行后打开网站一片空白怎么解决
    大家好,我是皮皮。一、前言前几天在Python白银交流群【乔.】问了一个Pythonweb开发的问题,一起来看看吧。他的报错内容如下所示:二、实现过程这里【论草莓如何成为冻干莓】给了一个思路:index.html这个文件中没有内容,只有标题。你放点内容进去就能看到内容了。经过点拨,顺利......
  • docker和docker-compose生产的容器,不在同一个网段,解决方式
    在实际项目中,使用dockerrunxxXx 和docker-composeup-d不在同一个网段,一个是默认是172.17.x.x, 另一个是172.19.x.x。为解决这个问题需要自定义一个网络,我命名为“my-bridge”首先熟悉几条命令:dockernetworkls或者dockernetworklist 查看当前的docker网络......
  • jsmpeg视频播放器使用方法和常见问题解决方案
    JSMpeg是一个使用JavaScript编写的视频播放器,它可以在浏览器中播放MPEG1视频和MP2音频流。JSMpeg的特点是它能够通过WebSockets实时传输视频流,并且可以在不支持HTML5视频播放器的浏览器上运行。以下是JSMpeg的基本使用方法和一些常见问题的解决方案:主要用来解决移移动端视频播放问......
  • No installations recognized 以及 nvm use切换node版本无效的解决办法
    NodeJS版本管理工具——NVM:https://blog.csdn.net/weixin_44767973/article/details/131591333  前端开发node.js、vue安装环境【安装node版本管理工具-nvm,耗时一天时间踩坑总结】: https://blog.csdn.net/weixin_48337566/article/details/127003773 Noinstallationsr......
  • js实现自动滚动以及分页数据请求,解决不同手机scrollTop++兼容问题
    创作不易,主要是为了分享,希望能帮到碰到类似问题的朋友,有帮助的话就给点个赞吧。 需求:公司需要实现一份合同的自动滚动预览,以及分页请求下一页数据继续滚动,直到所有合同加载完成就取消滚动。问题:不同手机使用scrollTop++,会出现+1出现小数点,整数的情况,导致请求下一页的数据无法......
  • 硬盘录像机无法注册到视频监控平台EasyCVR上是什么原因?该如何解决?
    视频监控汇聚平台EasyCVR可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安防视频监控的能力,也具备接入AI智能分析的能力,包括对人、车、物、行为等事......
  • 关于安装pytorch1.0.0版本(果然还是要手动自己去找啊。。。一遍成!!保真)
    首先第一步就是不要跑到官网里边去按照官网给的提示去下载!!不要不要不要!也不要去什么用清华镜像源啥的,因为根本找不到,很折腾!直接在这个网站download.pytorch.org/whl/cu100/torch_stable.html里边找你想要下载的torch1.0.0版本以及torchvision(如果要装cudatoolkit10.2版的torch,......
  • Navicat中出现中文乱码解决办法
    问题:Navicat中出现中文乱码怎么办? 解决办法:1、选择数据库右键编辑连接 2、选择高级,在编码那栏点击下拉箭头 3、选择自动后点击确定 4、开始链接即可 ......
  • 基于Intel Math Kernel Library的猫狗分类模型
    项目介绍猫狗分类的图像数据集是一个广泛用于计算机视觉任务的数据集,旨在训练机器学习模型来区分猫和狗的图像。这个数据集通常包括大量的猫和狗的图像,这些图像通常已经被标记为猫或狗。在这个项目中,我们要使用RNN也就是循环神经网络来对猫狗图像进行分类。而我为什么要采用这个......